TUTORIAL 2 SOLUTIONS

#7.7.11 Consider a population of size four, the members of which have values x_1, x_2, x_3, x_4.

a. If simple random sampling were used, how many samples of size two are there?

b. Suppose that rather than simple random sampling, the following sampling scheme is used. The possible samples of size two are

$$\{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}, \{x_1, x_4\}$$

and the sampling is done in such a way that each of these four possible samples is equally likely. Is the sample mean unbiased?

Solution

a. The number of simple random samples of size 2 is $\binom{4}{2} = 6$.
b. Let μ denote the population mean. I.e.

$$\mu = \frac{x_1 + x_2 + x_3 + x_4}{4}.$$

We observe that

$$E(\bar{X}) = \frac{1}{4}\left[\frac{x_1 + x_2}{2} + \frac{x_2 + x_3}{2} + \frac{x_3 + x_4}{2} + \frac{x_1 + x_4}{2}\right]$$

$$= \frac{x_1 + x_2 + x_3 + x_4}{4}$$

$$= \mu.$$

This implies that the sample mean is an unbiased estimate of the population mean (even though the sample is not a s.r.s.).
#7.7.12 Consider simple random sampling with replacement.

a. Show that

\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]

is an unbiased estimate of \(\sigma^2 \).

b. Is \(s \) an unbiased estimate of \(\sigma \)?

c. Show that \(n^{-1} s^2 \) is an unbiased estimate of \(\sigma^2 \bar{X} \).

d. Show that \(n^{-1} N^2 s^2 \) is an unbiased estimate of \(\sigma^2_T \).

e. Show that \(\hat{p}(1 - \hat{p})/(n - 1) \) is an unbiased estimate of \(\sigma^2_{\hat{p}} \).

Solution First we observe that the sample \(X_1, \ldots, X_n \) is an i.i.d. sequence of random variables.
a. Let $\mu = E(X_1)$ and $Y_i = X_i - \mu$. Then

$$E(Y_i) = 0,$$

$$\text{Var}(Y_i) = \text{Var}(X_i) = \sigma^2,$$

$$E(s^2) = \frac{1}{n-1} \sum_{i=1}^{n} E[(X_i - \mu - (\bar{X} - \mu))^2]$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} E(Y_i - \bar{Y})^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} E(Y_i^2 - 2Y_i\bar{Y} + \bar{Y}^2)$$

$$= \frac{n\sigma^2}{n-1} - \frac{2n}{n-1} E(\bar{Y}^2) + \frac{n}{n-1} E(\bar{Y}^2)$$

$$= \frac{n\sigma^2}{n-1} - \frac{n}{n-1} E(\bar{Y}^2).$$
Since \(E(\bar{Y}^2) = \text{Var}(\bar{Y}) = \sigma^2/n \),

\[
E(s^2) = \frac{n\sigma^2}{n-1} - \frac{\sigma^2}{n-1} = \sigma^2.
\]

This implies that \(s^2 \) is an unbiased estimate of \(\sigma^2 \).

b. No, \(s \) is not an unbiased estimate of \(\sigma \) since in general

\[
E(s) = E(\sqrt{s^2}) < \sqrt{E(s^2)} = \sqrt{\sigma^2} = \sigma.
\]

This follows from Jensen’s inequality and

\(E(s) = \sqrt{E(s^2)} \) only if \(s \) is a constant.
c. From a. we have

\[E(n^{-1}s^2) = \frac{1}{n}E(s^2) \]

\[= \frac{\sigma^2}{n} \]

\[= \sigma^2 \bar{X}. \]

That is \(n^{-1}s^2 \) is an unbiased estimate of the variance of \(\bar{X} \).

d. Recall that \(T = N\bar{X} \) and \(\text{Var}(T) \) is given by

\[\sigma_T^2 = \text{Var}(N\bar{X}) \]

\[= N^2\text{Var}(\bar{X}) \]

\[= N^2\frac{\sigma^2}{n}. \]

Consequently,

\[E(n^{-1}N^2s^2) = n^{-1}N^2E(s^2) \]

\[= n^{-1}N^2\sigma^2 \]

\[= \sigma_T^2. \]
This shows that $n^{-1}N^2s^2$ is an unbiased estimate of σ_T^2.

e. Recall that $\hat{p} = \bar{X}$ when the X_i’s only take values 0 or 1. Observe that

$$\sigma_{\hat{p}}^2 = \sigma_X^2$$

$$= \frac{\sigma^2}{n}.$$

Consequently,

$$E\frac{\hat{p}(1 - \hat{p})}{n - 1} = \frac{1}{n - 1}E\left[\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2\right]$$

$$= \frac{1}{n(n - 1)} \sum_{i=1}^{n} E(X_i - \bar{X})^2$$

$$= \frac{1}{n}E(s^2) = \frac{\sigma^2}{n}.$$

This shows that $(1 - \hat{p})/(n - 1)$ is an unbiased estimate of $\sigma_{\hat{p}}^2$.

7
#7.7.23

a. Show that the standard error of an estimated proportion is largest when $p = 1/2$.

b. Use this result and Corollary B of Section 7.3.2 to conclude that the quantity
\[
\frac{1}{2} \sqrt{\frac{N - n}{N(n - 1)}}
\]

is a conservative estimate of the standard error of \hat{p} no matter what the value of p may be.

c. Use the central limit theorem to conclude that the interval
\[
\hat{p} \pm \sqrt{\frac{N - n}{N(n - 1)}}
\]

contains p with probability at least 0.95.
Solution

a. Recall that the sample is s.r.s. From page 214 of the text, the standard error of \(\hat{p} \) is given by

\[
\sigma_{\hat{p}} = \sqrt{\frac{N - n}{N - 1} \frac{p(1 - p)}{n}}.
\]

Treating \(\sigma_{\hat{p}} \) as a function of \(p \), we note that \(f(p) = p(1 - p), 0 \leq p \leq 1 \), is maximized when \(p = 1/2 \).

b. Using a. and Corollary B of Chapter 7.3.2, we have

\[
s_{\hat{p}}^2 = \frac{\hat{p}(1 - \hat{p})}{n - 1} (1 - \frac{n}{N})
\leq \frac{1}{2} \left(1 - \frac{1}{n} \right) \left(\frac{1}{n - 1} \right) (1 - \frac{n}{N})
\]

\[= \frac{N - n}{4N(n - 1)}.
\]
Taking square root, we have

\[s\hat{p} \leq \frac{1}{2} \sqrt{\frac{N - n}{N(n - 1)}}. \]

The r.h.s. is a conservative estimate of the standard error of \(\hat{p} \).

c. Using the CLT from s.r.s., a 95% CI for \(p \) is

\[\hat{p} \pm z_{0.025} s\hat{p}. \]

Since \(z_{0.025} = 1.96 \approx 2 \), it follows from **b.** that the interval

\[\hat{p} \pm \sqrt{\frac{N - n}{N(n - 1)}}. \]

contains \(p \) with probability at least 0.95.
#7.7.24 For a random sample of size n from a population of size N, consider the following as an estimate of μ:

$$\bar{X}_c = \sum_{i=1}^{n} c_i X_i$$

where the c_i are fixed numbers and X_1, \ldots, X_n is the sample.

a. Find a condition of the c_i such that the estimate is unbiased.

b. Show that the choice of c_i that minimizes the variance of the estimate subject to this condition is $c_i = 1/n$, where $i = 1, \ldots, n$.
Solution Note that in this problem, a random sample is meant an i.i.d. sample.

a. \(\bar{X}_c \) is an unbiased estimate of the population mean \(\mu \) iff

\[
\mu = E(\bar{X}_c) = \sum_{i=1}^{n} c_i E(X_i) \\
= (\sum_{i=1}^{n} c_i) \mu.
\]

This implies that the condition for unbiasedness is

\[
\sum_{i=1}^{n} c_i = 1.
\]
b. Let $\text{Var}(X_1) = \sigma^2$. Then by the independence of X_1, \ldots, X_n, we have

$$\text{Var}(\bar{X}_c) = \text{Var}(\sum_{i=1}^{n} c_i X_i)$$

$$= \sum_{i=1}^{n} c_i^2 \text{Var}(X_i)$$

$$= \sigma^2 \sum_{i=1}^{n} c_i^2.$$

We want to minimize $\sum_{i=1}^{n} c_i^2$ subject to $\sum_{i=1}^{n} c_i = 1$.

To do that we minimize the following Lagrangian function:

$$f(c_1, \ldots, c_n, \lambda) = \sum_{i=1}^{n} c_i^2 + \lambda (1 - \sum_{i=1}^{n} c_i).$$

Here λ is the Lagrangian multiplier.
We partial differentiate f wrt $c_1, \ldots, c_n, \lambda$,

$$\frac{\partial f}{\partial c_i} = 2c_i - \lambda, \quad i = 1, \ldots, n,$$
$$\frac{\partial f}{\partial \lambda} = 1 - \sum_{i=1}^{n} c_i.$$

Equating these partial derivatives to 0, we have

$$c_i = \frac{\lambda}{2}, \quad i = 1, \ldots, n,$$
$$1 = \sum_{i=1}^{n} c_i = \frac{\lambda n}{2}.$$

Solving for c_i and λ, we have

$$\lambda = \frac{2}{n},$$
$$c_i = \frac{1}{n}, \quad i = 1, \ldots, n.$$
By taking 2nd partial derivatives of f, it can be shown that this gives the minimum (and not maximum) of f.