Consider a disease trait partially determined by an autosomal locus with two alleles 1 and 2 having frequencies \(p_1 \) and \(p_2 \). Let \(\phi_{k|l} \) be the probability that a person with genotype \(k/l \) manifests the disease.

For the sake of simplicity, assume that people mate at random and that the disease states of two relatives \(i \) and \(j \) are independent given their genotypes at the disease locus. Now let \(X_i \) and \(X_j \) be indicator random variables that assume the value 1 when \(i \) or \(j \) is affected, respectively. Show that

\[
\Pr(X_j = 1 \mid X_i = 1) = \frac{\sum_{g_i} \sum_{S_{ij}} \Pr(X_j = 1 \mid g_j) \Pr(g_j \mid S_{ij} \mid g_i) \times \Pr(S_{ij} \mid g_i) \Pr(g_i \mid X_i = 1)}{\Pr(S_{ij} \mid g_i) \Pr(g_i \mid X_i = 1)},
\]

where \(g_i \) and \(g_j \) are the possible genotypes of \(i \) and \(j \) and \(S_{ij} \) is a condensed identity state. This gives an alternative to computing risks by multiplying the relative risk ratio \(\lambda_k \) by the prevalence \(K \). Explicitly evaluate the risk (6.9) for identical twins and parent–offspring pairs.

4. Suppose that the two relatives \(i \) and \(j \) are inbred. Show that the covariance between their trait values \(X_i \) and \(X_j \) is

\[
\text{Cov}(X_i, X_j) = (4\Delta_1 + 2\Delta_2 + 2\Delta_3 + 2\Delta_4 + \Delta_5) \sum_k \sigma_k^2 p_k + (4\Delta_1 + \Delta_2 + \Delta_3) \sum_k \sigma_k^2 \delta_{kk} p_k
\]

\[
+ \Delta_1 \sum_k \delta_{kk}^2 p_k + \Delta_2 \sum_k \delta_{kk}^2 p_k p_k
\]

\[
+ (\Delta_3 - f_i f_j) \left(\sum_k \delta_{kk} p_k \right)^2.
\]

What is \(\text{Cov}(X_i, X_j) \) when \(\sigma_k^2 = 0 ?>
5. For a locus with two alleles, show that the additive genetic variance satisfies
\[
\sigma_a^2 = 2p_1p_2(a_1 - a_2)^2
\]
\[= 2p_1p_2[p_1(\mu_{11} - \mu_{12}) + p_2(\mu_{12} - \mu_{22})]^2. \quad (6.10)
\]
As a consequence of formula (6.10), \(\sigma_a^2 \) can be 0 only in the unlikely circumstance that \(\mu_{12} \) lies outside the interval with endpoints \(\mu_{11} \) and \(\mu_{22} \). (Hint: Expand \(0 = 2(a_1p_1 + a_2p_2)^2 \) and subtract from the expression defining \(\sigma_a^2 \).)

Show that the dominance genetic variance satisfies
\[
\sigma_d^2 = p_1^2p_2^2(\mu_{11} - 2\mu_{12} + \mu_{22})^2.
\]
It follows that if either \(p_1 \) or \(p_2 \) is small, then \(\sigma_d^2 \) will tend to be small compared to \(\sigma_a^2 \). Hint: Let \(\bar{p} = p_1(\mu_{11} + 2\mu_{12} + \mu_{22}) + p_2(\mu_{12} + \mu_{22}) \). Since \(\bar{p} = 0 \), it follows that
\[
\begin{align*}
\delta_{11} &= \mu_{11} - 2\mu_{12} + \mu \\
&= p_1^2(\mu_{11} - 2\mu_{12} + \mu_{22}) \\
\delta_{12} &= -p_1p_2(\mu_{11} - 2\mu_{12} + \mu_{22}) \\
\delta_{22} &= p_2^2(\mu_{11} - 2\mu_{12} + \mu_{22}).
\end{align*}
\]

8. Let \((X_1, \ldots, X_n)\) and \((Y_1, \ldots, Y_n)\) be measured values for two different \(\vee \) traits on a pedigree of \(n \) people. Suppose that both traits are determined by the same locus. Show that there exist constants \(\sigma_{axy} \) and \(\sigma_{dxy} \) such that
\[
\text{Cov}(X_i, Y_j) = 2\sigma_{i,j}\delta_{axy} + \Delta_{i,j}\delta_{dxy}
\]
for any two non-inbred relatives \(i \) and \(j \) [8]. Prove that the two matrices
\[
\begin{pmatrix}
\sigma_{axx} & \sigma_{axy} \\
\sigma_{axy} & \sigma_{axy}
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
\sigma_{dxx} & \sigma_{dxy} \\
\sigma_{dxy} & \sigma_{dxy}
\end{pmatrix}
\]
are covariance matrices, where \(\sigma_{axx}^2, \sigma_{dxx}^2, \sigma_{dxy}^2 \), and \(\sigma_{axy}^2 \) are the additive and dominance genetic variances of the \(X \) and \(Y \) traits, respectively. (Hints: For the first part, consider the artificial trait \(W = X + Y \) for a typical person. For the second part, prove that
\[
\sigma_{axy} = 2\text{Cov}(A_1, B_1)
\]
\[
\sigma_{dxy} = \text{Cov}(X - A_1 - A_2, Y - B_1 - B_2),
\]
where \(A_k = E(X \mid Z_k) \) and \(B_3 = E(Y \mid Z_3) \), \(Z_1 \) and \(Z_2 \) being the maternal and paternal alleles at the common locus.)