4.9 Problems

1. Test for Hardy-Weinberg equilibrium in the MN Syrian data presented in Chapter 2.

2. Table 4.4 lists frequencies of coat colors among cats in Singapore [32]. Assuming an X-linked locus with two alleles, estimate the two allele frequencies by gene counting. Test for Hardy-Weinberg equilibrium using a likelihood ratio test.

<table>
<thead>
<tr>
<th>Females</th>
<th></th>
<th>Males</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dark t/t</td>
<td>Calf t/y</td>
<td>Yellow y/y</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>55</td>
<td>12</td>
</tr>
</tbody>
</table>

3. Let \((N_1, \ldots, N_m)\) be the outcome vector for a multinomial experiment with \(n\) trials and \(m\) categories. Prove that

\[
\Pr(N_1 \leq t_1, \ldots, N_m \leq t_m) \leq \prod_{i=1}^{m} \Pr(N_i \leq t_i) \tag{4.7}
\]

\[
\Pr(N_1 \geq t_1, \ldots, N_m \geq t_m) \leq \prod_{i=1}^{m} \Pr(N_i \geq t_i) \tag{4.8}
\]

for all integers \(t_1, \ldots, t_m\). If all \(t_k = 0\) in (4.8) except for \(t_i\) and \(t_j\), conclude that

\[
\Pr(N_i \geq t_i, N_j \geq t_j) \leq \Pr(N_i \geq t_i) \Pr(N_j \geq t_j)
\]
as stated in the text. (Hints: It suffices to show that (4.7) holds when \(n = 1 \) and that the set of random vectors satisfying (4.7) is closed under the formation of sums of independent random vectors. For (4.8) consider the vectors \(-N_1, \ldots, -N_m\).)

4. Using the Chen-Stein method and probabilistic coupling, Barboza et al. [4] show that the statistic \(W_d \) satisfies the inequality

\[
\sup_{d \in \mathcal{N}} |\Pr(W_d \in A) - \Pr(Z \in A)| \leq \frac{1 - e^{-\lambda}}{\lambda} |\lambda - \Var(W_d)|,
\]

(4.9)

where \(Z \) is a Poisson random variable having the same expectation \(\lambda = \sum_{i \in \mathcal{N}} \mu_i \) as \(W_d \) and where \(\mathcal{N} \) denotes the set \(\{0, 1, \ldots\} \) of nonnegative integers. Prove that

\[
\lambda - \Var(W_d) = \sum_i \mu_i^2 - 2 \sum_{i < j} \text{COV}(1_{\{N_i > d\}}, 1_{\{N_j > d\}}).
\]

In view of Problem 3, the random variables \(1_{\{N_i > d\}} \) and \(1_{\{N_j > d\}} \) are negatively correlated. It follows that the bound (4.9) is only useful when the number \(\lambda^{-1}(1 - e^{-\lambda}) \sum \mu_i^2 \) is small. What is the value of \(\lambda^{-1}(1 - e^{-\lambda}) \sum \mu_i^2 \) for the hemoglobin data when \(d = 27 \)? Careful estimates of the difference \(\lambda - \Var(W_d) \) are provided in [4].

5. Consider a multinomial model with \(m \) categories, \(n \) trials, and probability \(p \) attached to category \(i \). Express the distribution function of the maximum number of counts \(\max_i N_i \) observed in any category in terms of the distribution functions of the \(W_d \). How can the algorithm for computing the distribution function of \(W_d \) be simplified to give an algorithm for computing a \(p \)-value of \(\max_i N_i \)?

6. Continuing Problem 5, define the statistic \(U_d \) to be the number of categories \(i \) with \(N_i < d \). Express the right-tail probability \(\Pr(U_d > j) \) in terms of the distribution functions of the \(W_d \). This gives a method for computing \(p \)-values of the statistic \(U_d \). In some circumstances \(U_d \) has an approximate Poisson distribution. What do you conjecture about these circumstances?

7. The nonparametric linkage test of de Vries et al. [10] uses affected sibbing data. Consider a nuclear family with \(s \) affected sibs and a heterozygous parent with genotype \(a/b \) at some marker locus. Let \(n_a \) and \(n_b \) count the number of affected sibs receiving the \(a \) and \(b \) alleles, respectively, from the parent. If the other parent is typed, then this determination is always possible unless both parents and the child are simultaneously of genotype \(a/b \). de Vries et al. [10] suggest the statistic \(T = |n_a - n_b| \). Under the null hypothesis of independent transmission of the disease and marker genes, Barth et al. [8] show that \(T \) has

\[
\text{mean and var} \]

should be appropriate because between the markers.

8. To compute nonparametric linkage for \(s \) even and small, use \(u \) to be a falling factorial, integers indexed by \(j \), and \(u_j = \sum \lambda^{u_j} \).

In particular, verify:

9. Verify the mean and item 8. Alternatively, and calculate the \(n \) methods give the same two components. Set one equal to 1 or 2. The 4th indicator case is a case and has gen.
mean and variance

$$E(T) = \begin{cases} s \left(\begin{array}{c} \frac{1}{2} \end{array} \right) + \left(\frac{1}{2} \right) & \text{if } s \text{ is even} \\ s \left(\begin{array}{c} \frac{3}{2} \end{array} \right) - \left(\frac{3}{2} \right) & \text{if } s \text{ is odd} \end{cases}$$

$$Var(T) = s - E(T)^2.$$

Prove these formulas. If there are n such parents (usually two per family), and the ith parent has statistic T_i, then the overall statistic

$$\frac{\sum_{i=1}^{n} T_i - E(T_i)}{\sqrt{\sum_{i=1}^{n} Var(T_i)}}$$

should be approximately standard normal. A one-sided test is appropriate because the T_i tend to increase in the presence of linkage between the marker locus and a disease predisposing locus. (Hint: The identities

$$\sum_{i=0}^{s-1} \left(\begin{array}{c} s \\ i \end{array} \right) = 2^{s-1} - \left(\frac{s}{2} \right)$$

$$\sum_{i=0}^{s-1} \left(\begin{array}{c} s \\ i \end{array} \right) = s \left(2^{s-2} - \left(\frac{s-1}{2} \right) \right)$$

for s even and similar identities for s odd are helpful.)

8. To compute moments under the Fisher-Yates distribution (4.4), let

$$\nu^r = \left\{ \begin{array}{ll} u(u-1) \cdots (u-r+1) & r > 0 \\ 1 & r = 0 \end{array} \right.$$

be a falling factorial power, and let T_i be a collection of nonnegative integers indexed by the haplotypes $i = (i_1, \ldots, i_m)$. Setting $l = \sum_i l_i$ and $l_{ij} = \sum_i 1(i_j = k)$, show that

$$E\left(\prod_{j=1}^{m} n_j^{l_{ij}} \right) = \frac{\prod_{j=1}^{m} l_j^{n_j} l_{ij}^{l_{ij}}}{\nu^{l_{ij}}}.$$

In particular, verify that $E(n_j) = n_i$.

9. Verify the mean and variance expressions in equation (4.6) using Problem 8. Alternatively, write c_j as a sum of indicator random variables and calculate the mean and variance directly. Check that the two methods give the same answer. (Hints: In applying Problem 8, I has two components. Set all but one of the l_i equal to 0. Set the remaining one equal to 1 or 2 to get either a first or second factorial moment. The lth indicator random variable indicates whether the kth person in the case and has genotype j.)
4. Hypothesis Testing and Categorical Data

A genotypic phenotypes \(x \) unrelated people at each of \(n_i \) loci with codominant alleles and records a vector \(i = (i_1, i_2, \ldots, i_{n_i}) \) of genotypes for each person. Because phase is unknown, it cannot be rescored into haplotypes. The data gathered can be summarized by the number of people \(n_i \) counted for each genotype vector \(i \). Let \(n_{jk} \) be the number of alleles of type \(k \) at locus \(j \) observed in the sample, and let \(n_i \) be the total number of heterozygotes observed over all loci. Assuming genetic equilibrium, prove that the distribution of the counts \(n_i \) conditional on the allele totals \(n_{jk} \) is

\[
Pr((n_1) \mid (n_{jk})) = \left(\frac{n_{jk}}{n_i} \right)^{n_{jk}} \prod_{j=1}^{n_i} \left(\frac{n_{jk}}{n_{jk}} \right).
\]

(4.10)

The moments of the distribution (4.10) are computed in [23]; just as with haplotype count data, all allele frequencies cancel.

11. Describe and program an efficient algorithm for generating random permutations of the set \(\{1, \ldots, n\} \). How many calls of a random number generator are involved? How many interchanges of two numbers? You might wish to compare your results to the algorithm in [27].

12. Describe and program a permutation version of the two-sample t-test. Compare it on actual data to the standard two-sample t-test.

4.10 REFERENCES

[10] de Vries RP, HLA-linked g. Lancet 2:1230-1231
[12] Evans WJ, G, Statistiaal anal. the x2 test, C.
[16] Hanash SM, Bo random dis. cultured human 169