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Abstract

In this paper, we propose a method called sequential Lasso (SLasso) for
feature selection in sparse high dimensional linear models. The SLasso se-
lects features by sequentially solving partially penalized least squares problems
where the features selected in earlier steps are not penalized. The SLasso uses
extended BIC (EBIC) as the stopping rule. The procedure stops when EBIC
reaches a minimum. The asymptotic properties of SLasso are considered when
the dimension of the feature space is ultra-high and the number of relevant fea-
ture diverges. We show that, with probability converging to 1, the SLasso first
selects all the relevant features before any irrelevant features can be selected,
and that the EBIC decreases until it attains the minimum at the model consist-
ing of exactly all the relevant features and then begins to increase. These results
establish the selection consistency of SLasso. The SLasso estimators of the final
model are ordinary least squares estimators. The selection consistency implies
the oracle property of SLasso. The asymptotic distribution of the SLasso esti-
mators with diverging number of relevant features is provided. The SLasso is
compared with other methods by simulation studies, which demonstrates that
SLasso is a desirable approach having an edge over the other methods. The
SLasso together with the other methods are applied to a microarray data for
mapping disease genes.

Key Words: extended BIC; feature selection; oracle property; selection consistency;

sequential Lasso, sparse high dimensional linear models.
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1 Introduction

Sparse high-dimensional regression (SHR) models arise in many important contem-

porary scientific fields. A SHR model is as follows:

yi = β0 +

p∑
j=1

βjxij + εi, i = 1, . . . , n, (1.1)

where the number of features p is much larger than the sample size n, and only a

relatively small number of the βj’s are non-zero. Feature selection is crucial in the

analysis of SHR models. There are usually two goals of feature selection: (i) to build

a model with desirable prediction properties and (ii) to identify the features with non-

zero coefficients (for convenience, such features are referred to as relevant features in

this article). These two goals are intertwined but not the same.

Regularized regression approaches to the analysis of SHR models have attracted

considerable attention of the researchers. A regularized regression approach selects

the features and estimates the coefficients simultaneously by minimizing a penalized

sum of squares of the form:
n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 +

p∑
j=1

pλ(|βj|), (1.2)

where λ is a regulating parameter and pλ is a penalty function such that the number

of fitted non-zero coefficients can be regulated by λ; that is, only a certain number of

βj’s are estimated non-zero when λ is set at a certain value. Various penalty functions

have been proposed and studied, including Lasso [28]: pλ(|βj|) = λ|βj|, SCAD [8],

which smoothly clips a L1 penalty (for small |βj|) and a constant penalty (for large

|βj|), Adaptive Lasso [38]: pλ(|βj|) = λwj|βj| where wj are given weights, and MCP

[35], which smoothly approaches the L1 penalty from a constant penalty (for large

|βj|’s ) by an asymptote.

A so-called oracle property is of major concern for any feature selection method.

The oracle property refers to two asymptotic natures: (a) selection consistency, i.e.,
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the sparse relevant features can be exactly selected with probability converging to

1, and (b) the effects of relevant features can be consistently estimated the same as

they would be were they obtained by knowing the relevant features in advance. For

fixed p, it was showed in [17] [19] that Lasso is consistent in estimating the regression

coefficients but, in general, it does not have the oracle property. A condition on

the feature matrix was provided in [38] for Lasso to possess the oracle property.

The condition was also discovered in [21] [37] and was dubbed as irrepresentability

condition in [37]. When p is allowed to diverge to infinity faster than n (but not

too fast), the selection consistency of Lasso under the irrepresentability condition

was established in [21] [37]. To relax the irrepresentability condition, Adaptive Lasso

was considered in [38] for fixed p using the ordinary least squares estimates as the

weights in the penalty, and Adaptive Lasso was shown to have the oracle property.

For diverging p, [5] showed that Adaptive Lasso with marginal least squares estimates

as the weights has the oracle property if a partial orthogonality condition holds. The

properties of SCAD were studied in [8] [9] [10] [33]. In these papers, the oracle

property of SCAD was established for various models when p is fixed or diverging

to infinity not too fast. The MCP penalty is similar to the SCAD penalty. The

asymptotic properties of the MCP penalty were studied in [35]. To realize the oracle

property of the various regularized regression methods in finite samples, a proper

choice of the regulating parameter has to be made. A multi-fold cross validation

(CV) is commonly used in these methods for the choice of the regulating parameter.

Sequential methods have also received attention in recent years for feature selec-

tion in SHR models. The traditional sequential procedures such as forward stepwise

regression (FSR) were criticized for their greedy nature. However, it was discovered

recently that the greedy nature is indeed a good one if the goal is to identify relevant

features, see [29] [30], especially, in the presence of high spurious correlations due to
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extremely high dimensionality of the feature space. In many practical problems, the

identification of the relevant features is of primary interest. For example, in genetic

quantitative trait loci (QTL) mapping and disease gene mapping, of interest are the

markers which are either QTL or disease gene themselves or are in linkage disequilib-

rium with QTL or disease genes. In addition, sequential methods are computationally

appealing. These revived interests in sequential approaches.

The properties of FSR for feature selection in SHR models were re-examined

in [31]. It was shown that FSR has a so-called sure screening property when the

procedure is carried out until a certain step before the number of steps reaches the

sample size. The sure screening property means that the selected set contains the set

of relevant features with probability converging to 1, see [11].

A different version of forward regression referred to as forward selection in [32] was

re-considered and dubbed as orthogonal matching pursuit (OMP) in [34]. At each

step of OMP, the response vector is projected onto the space spanned by the currently

selected features, and the next feature is selected to maximize the correlation with the

current residual. The procedure stops when the residual is reduced below a certain

level specified by a stopping rule. The properties of OMP have been studied under

quite strict conditions in, e.g., [2] [29] [30]. A thorough investigation of the properties

of OMP is still lacking.

An adaptive forward-backward greedy algorithm (FoBa) was considered in [36].

The FoBa is a variant of OMP. At the forward step of FoBa, the same mechanism

of OMP is used to select new features. A new feature is selected if the amount of

decrease in the residual exceeds a specified threshold. Following each forward step,

a backward step is carried out if the amount of increase in the residual caused by

deleting one of the selected features is less than half of the amount of increase at the

forward step. The procedure stops when the amount of decrease in the residual at the
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forward step falls below the specified threshold. Some oracle inequalities have been

derived under a so-called restricted isometry condition in [36], however, whether or

not FoBa is selection consistent is left untouched.

A non-sequential but closely related procedure called compressive sampling match-

ing pursuit (CoSaMP) was proposed in [22]. The procedure of CoSaMP assumes the

knowledge of sparsity level k, i.e., the number of relevant features. For a given k, the

CoSaMP starts with a sparse set consisting of the k features having highest corre-

lations with the response vector, then updates the sparse set by iteration. At each

iteration, the response vector is projected onto the space spanned by the sparse set,

2k additional features having highest correlations with the residual of the projection

together with the sparse set are fitted to a least square regression model, the updated

sparse set consists of the k features having the largest absolute fitted coefficients in

the regression model. The number of iterations is either fixed or determined by a cer-

tain rule. Eventually, the true sparsity level is chosen by a certain method. Though

the procedure of CoSaMP is appealing, its properties are not fully investigated.

A sequential procedure of a different nature called least angle regression (LAR)

was proposed in [7]. The LAR continuously updates the estimate of the expected

responses along a direction having equal angle with the features already selected

and selects new features having the largest absolute correlation with the updated

current residuals. The fitted regression coefficients at each step are shrunk. The

LAR algorithm has been modified to compute the solution path of Lasso. There are

also variants of LAR, e.g., the forward Lasso adaptive shrinkage (FLASH) considered

in [24]. The fitted regression coefficients at each step of FLASH are not fully shrunk

as in LAR or Lasso.

In this paper, we propose a sequential procedure called sequential Lasso (SLasso)

with the emphasis on the goal of identifying relevant features. We give a conceptual
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description of SLasso in the following. Its computation algorithm is given in §2. In

summary, SLasso solves a sequence of partially penalized least squares problems. The

features selected in an earlier step are not penalized in the subsequent steps. Let the

vectors y = (y1, . . . , yn)τ , xj = (x1j, . . . , xnj)
τ , be standardized such that they have

length
√
n and are orthogonal to the vector with all elements 1. Thus in model (1.1),

the intercept β0 can be omitted. At the initial step, SLasso minimizes the following

penalized sum of squares:

l1 = ‖y −
p∑
j=1

βjxj‖2 + λ1

p∑
j=1

|βj|,

where ‖ · ‖ is the L2-norm, and λ1 is the largest value of the penalty parameter such

that at least one of the βj’s will be estimated non-zero. The features with non-zero

estimated coefficients are selected and the set of their indices is denoted by s∗1. For

k ≥ 1, let s∗k be the index set of the features selected until step k. At step k + 1,

SLasso minimizes the following partially penalized sum of squares:

lk+1 = ‖y −
p∑
j=1

βjxj‖2 + λk+1

∑
j 6∈s∗k

|βj|,

where no penalty is imposed on the βj’s for j ∈ s∗k and λk+1 is the largest value of

the penalty parameter such that at least one of the βj’s, j 6∈ s∗k, will be estimated

non-zero. The selected set is then updated to s∗k+1. The EBIC proposed in [3] is

used as the stopping rule. For each s∗k, the EBIC of the model with features in s∗k

is computed. The procedure continues, if the EBIC keeps decreasing. If the EBIC

attains a minimum at step k∗, the procedure stops and the set s∗k∗ is taken as the

final selected set.

The minimization of lk+1 is equivalent to the minimization of

‖ỹ − X̃β̃‖2 + λk+1

∑
j 6∈s∗k

|βj|, (1.3)
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where ỹ is the residual of y projected on the space spanned by the xj’s with j ∈ s∗k

and X̃ is the residual matrix of the xj’s, j 6∈ s∗k, projected on the same space,

see Proposition 2.2. The active features xj in the minimization of (1.3) must attain

maxj′ 6∈s∗k |ỹ
τxj′ |. Thus, the minimization of (1.3) further reduces to the minimization

of

‖ỹ − X̃TEMPβ̃TEMP‖2 + λk+1

∑
j∈sTEMP

|βj|, (1.4)

where sTEMP = {j : |ỹτxj| = maxj′ 6∈s∗k |ỹ
τxj′ |}, X̃TEMP and β̃TEMP are, respectively,

the corresponding projected residual matrix and the coefficient vector. If a partial

positive cone condition (condition A2 in §3) is satisfied then sTEMP is exactly the index

set of the active xj’s. When sTEMP is a singleton, the partial positive cone condition

is automatically satisfied. For these results, see the proof of Theorem 3.1. The non-

singleton case rarely occurs. Therefore, the minimization of (1.4) is rarely called.

If the need for the minimization of (1.4) does arise, the active xj’s can be easily

obtained by applying the R function glmpath [23] to ỹ and X̃TEMP and extracting the

first feature (or features) with non-zero coefficient in the solution path. The results

discussed above give rise to an efficient computation algorithm which is provided

in §2.

We consider the properties of SLasso cum EBIC in the scenario that p = exp(cnκ),

0 < κ < 1, and the number of relevant features p0 is also diverging to infinity at a

proper rate. We establish the following properties. Let s∗1, s∗2, · · · , s∗k, · · · be the

sequence generated by SLasso. Under reasonable conditions, there is a k = k∗ such

that s∗k∗ = s0 with probability converging to 1 as n goes to infinity, where s0 is

the exact index set of the relevant features (Theorem 3.1 and 3.2). Further, with

probability converging to 1 uniformly for all k < k∗, EBIC(s∗k) > EBIC(s∗k+1) and

EBIC(s) > EBIC(s0) for all s such that p0 < |s| ≤ k0p0 with any fixed k0 > 1, |s|

denoting the number of features in s, (Theorem 3.3). These results imply the selection
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consistency of the SLasso cum EBIC procedure. The asymptotic distribution of the

SLasso estimators with diverging p0 is given in Theorem 3.4, which justifies the second

part of the oracle property.

The remainder of the article is arranged as follows. The basic properties of SLasso

cum EBIC and its computation algorithm are given in §2. The theoretical properties

of SLasso cum EBIC are studied in §3. Simulation studies comparing SLasso cum

EBIC with various other methods are reported in §4. A real data analysis is provided

in §5. The paper is concluded by a discussion of the similarities and differences

between SLasso cum EBIC and other related methods in §6. Some technical details

are provided in a supplementary document.

2 Basic properties and computation algorithm

We consider the scenario that both the total number of features and the number of

relevant features diverge. We also allow the set of relevant features and their effects

vary as n varies. For the sake of clarity, we do not index these quantities explicitly

by n, but their dependence on n should be kept in mind. Let X = (x1, . . . ,xp) be

the design matrix. Let β = (β1, . . . , βp)
τ , y = (y1, . . . , yn)τ and ε = (ε1, . . . , εn)τ . In

matrix notation, model (1.1) is expressed as

y = Xβ + ε.

Let S denote the set of indices {1, 2, · · · , p}. Let s be any subset of S. Denote by

X(s) the matrix consisting of the columns of X with indices in s. Similarly, let β(s)

denote the vector consisting of the corresponding components of β. Let R(s) be the

linear space spanned by the columns of X(s) and H(s) its corresponding projection

matrix, i.e, H(s) = X(s)[Xτ (s)X(s)]−1Xτ (s).
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Proposition 2.1. Let s∗k denote the index set of the features selected at the k-th step

of SLasso. For k ≥ 1 and any j̃ ∈ sc∗k, if X({j̃}) ∈ R(s∗k) then j̃ 6∈ s∗k+1.

Proof: If X({j̃}) ∈ R(s∗k) then there exists an ak such that X({j̃}) = X(s∗k)ak

and hence

lk+1 = ‖y −X(s∗k)(β(s∗k) + βj̃ak)−X(sc∗k/{j̃})β(sc∗k/{j̃})‖22 + λ(|βj̃|+
∑

j∈sc∗k/{j̃}

|β|j)

= ‖y −X(s∗k)β̃(s∗k)−X(sc∗k/{j̃})β(sc∗k/{j̃})‖22 + λ(|βj̃|+
∑

j∈sc∗k/{j̃}

|β|j)

≥ ‖y −X(s∗k)β̃(s∗k)−X(sc∗k/{j̃})β(sc∗k/{j̃})‖22 + λ
∑

j∈sc∗k/{j̃}

|β|j.

Thus when lk+1 is minimized βj̃ must be 0, i.e., j̃ 6∈ s∗k+1. 2

Proposition 2.1 implies that, for any k, the matrix X(s∗k) is of full column rank.

It also suggests that, in the SLasso procedure, any feature that is highly correlated

with the features selected already will have little chance to be selected subsequently.

This nature of SLasso is favorable when it is used for feature selection in ultra-high

dimensional feature space where high spurious correlations present, see [11].

Proposition 2.2. For k ≥ 1, the minimization of lk+1 is equivalent to the minimiza-

tion of

l̃k+1 = ‖ỹ − X̃β̃‖2 + λk+1

∑
j∈sc∗k

|βj|, (2.1)

where ỹ = [I −H(s∗k)]y, X̃ = [I −H(s∗k)]X(sc∗k), β̃ = β(sc∗k).

Proof: Differentiating lk+1 with respect to β(s∗k), we have

∂lk+1

∂β(s∗k)
= −2Xτ (s∗k)y + 2Xτ (s∗k)X(s∗k)β(s∗k) + 2Xτ (s∗k)X(sc∗k)β(sc∗k).

Setting the above derivative to zero, we obtain

β̂(s∗k) = [Xτ (s∗k)X(s∗k)]
−1Xτ (s∗k)[y −X(sc∗k)β(sc∗k)]. (2.2)
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Substituting (2.2) into ‖y −Xβ‖2 we have

lk+1 = ‖y −X(s∗k)β(s∗k)−X(s
c
∗k)β(sc∗k)‖2 + λk+1

∑
j∈sc∗k

|βj|

= ‖[y−X(sc∗k)β(sc∗k)]−X(s∗k)[X
τ(s∗k)X(s∗k)]

−1Xτ(s∗k)[y−X(sc∗k)β(sc∗k)]‖2+λk+1

∑
j∈sc∗k

|βj|

= ‖[I−H(s∗k)][y −X(sc∗k)β(sc∗k)]‖2 + λk+1

∑
j∈sc∗k

|βj|

= ‖ỹ − X̃β̃‖2 + λk+1

∑
j∈sc∗k

|βj|.

2

As a by-product of the above proof, the components of β̂(s∗k) are almost surely

nonzero since y is a vector of continuous random variables. This implies that s∗1 ⊂

s∗2 ⊂ · · · ⊂ s∗k ⊂ · · · ; that is, the feature sets selected in the sequential steps are

nested.

Proposition 2.3. Let sTEMP = {j : j ∈ sc∗k, |ỹτxj| = maxl∈sc∗k |ỹ
τxl|}. If sTEMP is a

singleton, then the xj with j ∈ sTEMP is the only feature with non-zero estimated coef-

ficient in the minimization of (2.1); otherwise, the minimization of (2.1) is equivalent

to the minimization of

‖ỹ − X̃TEMPβ̃TEMP‖2 + λk+1

∑
j∈sTEMP

|βj|,

where X̃TEMP consists of the x̃j with j ∈ sTEMP, β̃TEMP is the corresponding coefficient

vector.

This proposition follows from the proof of Theorem 3.1. Proposition 2.3 gives rise

to the following computation algorithm.

SLasso cum EBIC algorithm:
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• Initial Step: Standardize y, xj, j = 1, . . . , p, such that yτ1 = 0,xτj1 = 0 and

yτy = n, xτjxj = n. Compute xτjy for j ∈ S. Let

sTEMP = {j : |xτjy| = max
j′∈S
|xτ

j′
y|}.

If sTEMP is a singleton, let s∗1 = sTEMP, otherwise, apply glmpath to y and

X(sTEMP) and extract the first feature with non-zero coefficient in the solution

path, and let s∗1 be the active set. Compute I −H(s∗1) and EBIC(s∗1).

• General Step: For k ≥ 1, compute x̃τj ỹ for j ∈ sc∗k, where ỹ = [I −H(s∗k)]y,

x̃j = [I −H(s∗k)]xj . Let

sTEMP = {j : |x̃τj ỹ| = max
j′∈sc∗k

|x̃τ
j′
ỹ|}.

If sTEMP is a singleton, let s∗k+1 = s∗k∪sTEMP, otherwise, apply glmpath to ỹ and

X̃(sTEMP) and extract the first feature with non-zero coefficient in the solution

path, and let s∗k+1 be s∗k union the active set. Compute EBIC(s∗k+1). If

EBIC(s∗k+1) > EBIC(s∗k), stop; otherwise, compute I−H(s∗k+1) and continue.

• When the process stops, the parameters in the selected model are estimated by

their least squares estimates.

The EBIC for s∗k, k = 1, 2, . . . , in the above algorithm is given by

EBIC(s∗k) = n ln

(
‖[I −H(s∗k)]y‖22

n

)
+ |s∗k| lnn+ 2(1− lnn

r ln p
) ln

(
p

|s∗k|

)
,

where r is a positive number slightly bigger than 2, say r = 2.1. For more details on

EBIC, see §3.3. The matrix I−H(s∗k+1) can be updated from I−H(s∗k) recursively.

Suppose there are K active features with indices {jm : m = 1, . . . , K} at step k + 1.

Denote by Jm = {j1, . . . , jm}. Let J0 = φ. The recursive formula is given by

I −H(s∗k ∪ Jm) = [I −H(s∗k ∪ Jm−1)]
{
I −

xjmx
τ
jm [I −H(s∗k ∪ Jm−1)]

xτjm [I −H(s∗k ∪ Jm−1)]xjm

}
, (2.3)
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The amount of computation in the above algorithm is minimal. The computation of

the projection matrices does not involve any matrix inversion. The call for glmpath is

in fact seldom invoked. As mentioned earlier that, at steps where the partial positive

cone condition holds, the set sTEMP is indeed the index set of the active features at

those steps. Thus, the SLasso selects features at those steps by maximizing |x̃τj ỹ|,

which is the same as OMP.

3 The oracle property of SLasso cum EBIC

We assume in model (1.1) that the εi’s are i.i.d. normal random variables with mean

zero and variance σ2. We consider the design matrix X either as a deterministic

or a random matrix. Let s0 = {j : βj 6= 0, j = 1, . . . , p}. Assume ln p = O(nκ)

for some κ > 0 and p0 = |s0| = O(nc) for some 0 < c < 1. We establish the

oracle property of the SLasso cum EBIC procedure in this section. We first present

the result that, with probability converging to 1, the SLasso selects all the relevant

features before any irrelevant feature can be selected. Then we present the result

that, with probability converging to 1, the SLasso procedure using the EBIC as the

stopping rule stops exactly at the step when all the relevant features are selected. The

asymptotic distribution of the SLasso estimator is also provided. The proofs of these

results are given in the supplementary document. Some special cases are discussed

at the end of this section.

3.1 The case of deterministic design matrix

In the case of deterministic design matrix, suppose the columns of X are standardized.

We now introduce some notations. For s ⊂ S, let s− = sc ∩ s0. If s ⊂ s0 then s− is

the complement of s in s0. For s ⊂ s0, define

γn(j, s,β) =
1

n
xτj [I −H(s)]Xβ.
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In fact, γn(j, s,β) only depends on β(sc). But for the ease of notation, β and β(sc)

will be used interchangeably. Unless otherwise stated, β also denotes the unknown

true value of the parameter vector. We make the following assumptions.

A1 maxj∈sc0 |γn(j, s,β)| < qmaxj∈s− |γn(j, s,β)|, 0 < q < 1.

A2 (Partial positive cone condition). If s− 6= φ, let

As = {j̃ : j̃ ∈ s−, |γn(j̃, s,β)| = max
j∈sc
|γn(j, s,β)|},

and X̃(As) = [I −H(s)]X(As). Then [X̃
τ
(As)X̃(As]−11 > 0, where 1 is the

vector with all components 1.

A3
√
n

ln p
λmin[ 1

n
Xτ (s0)X(s0)] min

j∈s0
|βj| → +∞, as n → ∞, where λmin denotes the

smallest eigenvalue.

Assumption A1 is implied by the following condition

‖x̃τj X̃(s−)[X̃
τ
(s−)X̃(s−)]−1‖1 < 1− η,∀j ∈ sc0, (3.1)

where x̃j = [I −H(s)]xj and 0 < η < 1. The claim above follows because

|γn(j, s,β)| =
1

n
|xτj [I −H(s)]µ|

= |x̃τj X̃(s−)[X̃
τ
(s−)X̃(s−)]−1

1

n
X̃

τ
(s−)[I −H(s)]µ|

≤ ‖x̃τj X̃(s−)[X̃
τ
(s−)X̃(s−)]−1‖1

1

n
‖X̃τ

(s−)[I −H(s)]µ‖∞

< (1− η)
1

n
‖X̃τ

(s−)[I −H(s)]µ‖∞ = (1− η)
1

n
max
j∈s−
|xτj [I −H(s)]µ|

= (1− η) max
j∈s−
|γn(j, s,β)|,

where the strict inequality holds by (3.1).

Under assumption A1, the As in A2 is a subset of s0. Assumption A2 holds if and

only if

x̃τj X̃(As\{j})[X̃
τ
(As\{j})X̃(As\{j})]−11 < 1,∀j ∈ As. (3.2)
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We establish the equivalence of A2 and (3.2) below. Let A = X̃(As\{j}) and b = x̃j.

Since a permutation of the rows and columns does not change the sum of the rows,

it suffices to verify that the sum of the last row of

(
AτA Aτb
bτA bτb

)−1
is positive if and

only if bτA(AτA)−11 < 1. Let E = I −A(AτA)−1Aτ and F = I − b(bτb)−1bτ . By

the formula for the inverse of blocked matrices, we have(
AτA Aτb
bτA bτb

)−1
=

(
(AτFA)−1 −(AτA)−1Aτb(bτEb)−1

−(bτb)−1bτA(AτFA)−1 (bτEb)−1

)
.

and

(AτFA)−1 = [AτA−Aτb(bτb)−1bτA]−1

= (AτA)−1 + (AτA)−1Aτ (bτEb)−1bτA(AτA)−1.

Substituting the expression of (AτFA)−1 into the first block of the last row of the

above matrix, we obtain

−(bτb)−1bτA(AτFA)−1 = −(bτEb)−1bτA(AτA)−1.

Thus the sum of the last row becomes

(bτEb)−1 − (bτEb)−1bτA(AτA)−11 = (bτEb)−1[1− bτA(AτA)−11]

which is greater than 0 if and only if bτA(AτA)−11 < 1.

Condition (3.1) is a conditional version of the exact recovery condition (ERC)

assumed in [29] while conditioning on the subset s of the relevant features. Condition

(3.2) is similar to but much weaker than the irrepresentability condition. The above

arguments suggest that Conditions A1 and A2 might be weaker than the ERC and the

irrepresentability condition. This is indeed the case. We will demonstrate this by spe-

cial cases where the conditions for the selection consistency of the SLasso hold but the

ERC and the irrepresentability condition are not satisfied. If λmin( 1
n
Xτ (s0)X

τ (s0))

is bounded away from zero, which is a common assumption in the case of ultra-high
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dimensional feature space, then Condition A3 is equivalent to
√
n

ln pn
min
j∈s0
|βj| → ∞. If

ln p = O(nκ) with κ < 1/2 and min
j∈s0
|βj| ≥ Cn−δ for some constant C and δ < 1/2−κ,

A3 is then satisfied.

Theorem 3.1. Let s∗1, s∗2, · · · , s∗k, · · · be the sequence generated by the SLasso pro-

cedure. Suppose that assumptions A1-A3 hold. Let ln p = O(nκ), where κ < 1/2.

Then, there is a k∗ such that

Pr(s∗k∗ = s0)→ 1, as n→∞,

where s0 is the exact index set of the relevant features.

3.2 The case of random design matrix

Assume xi = (xi1, . . . , xip)
τ , i = 1, . . . , n, are i.i.d. copies of a random vector z =

(z1, . . . , zp)
τ . Without loss of generality, assume that Ez = 0 and Var(z) = Σ with

diagonal elements 1 and off-diagonal elements independent of n. Assume that

a1 The off-diagonal elements of Σ are bounded by a constant less than 1; that is, the

correlation between any two features are bounded below from −1 and above

from 1.

a2 σmax ≡ max1≤j,k≤p σ(zjzk) < ∞ where σ(zjzk) denotes the standard deviation of

zjzk.

a3 max1≤j,k≤pE exp(tzjzk) and max1≤j≤pE exp(tzjε) are finite for t in a neighbor-

hood of zero.

For any s, s̃ ⊂ S, denote by Σss̃ the sub matrix of Σ with row indices in s and column

indices in s̃. Define

Γ(j, s,β) = (ΣjS − ΣjsΣ
−1
ss ΣsS)β.

The following assumptions are imposed:
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A1
′

For any s ⊂ s0, s 6= s0, maxj∈sc0 |Γ(j, s,β)| < maxj∈s− |Γ(j, s,β)|.

A2
′

Let As = {j : j ∈ sc, |Γ(j, s,β)| = maxl∈sc |Γ(l, s,β)|}. Then

(ΣAsAs − ΣAssΣ
−1
ss ΣsAs)

−11 > 0.

A3
′ n1/2

ln p
λmin(Σs0s0)(minj∈s0 |βj|)→ +∞ as n→ +∞.

The assumptions A1
′

- A3
′

are in fact the assumptions A1 - A3 with the empirical

variances and covariances of the features replaced by their theoretical counterparts.

In order to establish the selection consistency of SLasso in the case of random feature

matrix, we need to pass from assumptions A1
′

- A3
′

to assumptions A1 - A3. The

following lemma ensures that if A1
′

- A3
′

hold then A1 - A3 hold with probability

converging to 1 as n goes to infinity.

Lemma 3.1. Under assumptions a1 - a3,

(i) P (max1≤j,k≤p
∣∣ 1
n

∑n
i=1 xijxik − Σjk

∣∣ > n−
1
3σmax)→ 0.

(ii) P (max1≤j≤p
∣∣ 1
n

∑n
i=1 xijεi

∣∣ > n−
1
3σ)→ 0.

(iii) Let Σjl|s = Σjl − ΣjsΣ
−1
ss Σsl and Σ̂jl|s = xτj [I −H(s)]xl/n. Then

max
1≤j,l≤p

max
s:|s|≤p0

|Σ̂jl|s − Σjl|s| = op(1).

The proof of the lemma is given in the supplementary document.

Theorem 3.2. Let ln p = O(nκ), κ < 1/3, and p0 = O(nc), κ/2 < c < 1/6. Assume

that conditions a1 - a3 and A1
′
-A3

′
are satisfied. Then, there is a k∗ such that

Pr(s∗k∗ = s0)→ 1, as n→∞.

The theorem is in fact a corollary of Lemma 3.1. It follows from the lemma

immediately that if a1 - a3 and A1
′
-A3

′
are satisfied then A1-A3 hold with probability

converging to 1. Thus the selection consistency of SLasso with random feature matrix

is established.
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3.3 Property of the stopping rule and the asymptotic distri-
bution of the SLasso estimators

For a linear model with features in s, the EBIC proposed in [3] is defined as

EBICγ(s) = n ln

(
‖[I −H(s)]y‖22

n

)
+ |s| lnn+ 2γ ln

(
p

|s|

)
, γ ≥ 0.

The properties of EBIC for sparse high-dimensional linear models are investigated in

[3] and [20]. It is shown that, if γ > 1− lnn/(2 ln p), EBIC is selection consistent in

the sense that

P ( min
|s|≤k0p0

EBICγ(s) > EBICγ(s0))→ 1, as n→∞,

where k0 > 1 is any fixed number.

For the sequence s∗1, s∗2, · · · , s∗k, · · · selected by the procedure of SLasso, we have

shown that s∗1 ⊂ s∗2 ⊂ · · · ⊂ s∗k ⊂ · · · and that, with probability converging to 1,

there is a k∗ such that s∗k∗ = s0. In this sub section, we provide the result that,

with probability converging to 1, EBIC(s∗k) decreases when k < k∗ and reaches its

minimum at step k∗, and that EBIC(s∗k) > EBIC(s∗k∗) for any k > k∗. The result

is given in Theorem 3.3. This result implies that, with probability converging to 1,

the procedure of SLasso cum EBIC stops at step k∗. The parameters in the selected

model are estimated by their least squares estimates. Theorems 3.1 - 3.3 imply

that the estimators are obtained as if s0 were known in advance. This implies that

the SLasso cum EBIC procedure possesses the oracle property. Since p0 diverges,

the asymptotic theory on ordinary least squares estimators with fixed p0 does not

apply. We derive the asymptotic distribution of the SLasso estimator of β(s0) in

Theorem 3.4.

Theorem 3.3. Assume conditions A1 and A2. Suppose that ln pn = O(nκ), κ < 1/3,

p0 = O(nc), c < 1/6, and there is a constant C such that λmin( 1
n
X(s0)

τX(s0)) minj∈s0 |βj|
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≥ Cn−1/6+δ, where δ is an arbitrarily small positive number. Let s∗1 ⊂ s∗2 ⊂ · · · ⊂

s∗k ⊂ · · · be the sets generated by the procedure of SLasso. Let k∗ be as given in

Theorem 3.1 and 3.2. Then

(i) Uniformly, for k < k∗,

P (EBICγ(s∗k+1) < EBICγ(s∗k))→ 1, when γ > 0.

(ii) P (minp0<|s∗k|≤k0p0 EBICγ(s∗k) > EBICγ(s0)) → 1, when γ > 1 − lnn
2 ln p

, where

k0 > 1 is an arbitrarily fixed constant.

The proof of the theorem is given in the supplementary document.

In the stopping rule, γ is taken as 1 − lnn
r ln p

where r is slightly bigger than 2.

This choice of γ is to keep the EBIC selection consistent at one hand and to achieve

the largest power for the identification of relevant feature at another hand. A brief

justification is given as follows. For a sample of size n, define the positive discovery

rate (PDRn) and the false discovery rate (FDRn) as follows.

PDRn =
|s∗k∗ ∩ s0|
|s0|

, FDRn =
|s∗k∗ ∩ sc0|
|s∗k∗|

. (3.3)

The asymptotic property P (s∗k∗ = s0) → 1 is equivalent to that FDRn → 0 and

PDRn → 1 simultaneously. For any γ > 1 − lnn
2 ln pn

, the above convergences are

guaranteed, but the convergence rates are different for different γ values. For a bigger

γ, both FDRn and PDRn are smaller. By choosing the γ as small as possible in its

consistent range, the PDRn is maximized while the FDRn still converges to zero.

Let s∗ be the set selected by SLasso cum EBIC and β̂(s∗) the SLasso estimator

of β(s∗) (which is indeed the least squares estimator). Let a = (a1, a2, . . . , ) be an

infinite sequence of constants. For any index set s, let a(s) denote the vector with

components aj, j ∈ s. We have the following theorem.
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Theorem 3.4. Let zτi be the ith row vector of X(s0), i = 1, . . . , n. Assume that

lim
n→∞

max
1≤i≤n

zτi [X(s0)
τX(s0)]

−1zi → 0. (3.4)

Then, for any fixed sequence a,

a(s∗)τ [β̂(s∗)− β(s∗)]√
a(s∗)τ [X(s∗)τX(s∗)]−1a(s∗)

→d N(0, σ2),

where σ2 = Var(Yi).

Let β̂(s0) = [X(s0)
τX(s0)]

−1X(s0)
τy. Then under (3.4),

Vn =
a(s0)

τ [β̂(s0)− β(s0)]√
a(s0)τ [X(s0)τX(s0)]−1a(s0)

→d N(0, σ2),

which follows from the Linderberg’s central limit theorem, see Corollary 1.3 in [26].

Its proof is by checking the validity of the conditions for this corollary, which is

straightforward and is omitted here. Let Un =
a(s∗)τ [

ˆβ(s∗)−β(s∗)]√
a(s∗)τ [X(s∗)τX(s∗)]−1a(s∗)

. Since

P (Un 6= Vn) = P (s∗ 6= s0) → 0, we have that Un − Vn → 0 in probability. Thus,

by Slutsky’s theorem, Un = Vn + (Un − Vn) →d N(0, σ2). Theorem 3.4 implies that

any fixed dimensional sub vector of β̂(s∗) has an asymptotic multivariate normal

distribution.

3.4 Special cases

We give two special cases which demonstrate that the conditions required for the

oracle property of SLasso is weaker than the well-known irrepresentability condition.

Special case I: Let the correlation matrix of z be given by

Σ = (1− ρ)I + ρ11τ ,

where I is the identity matrix of dimension p, 1 is a p-vector of all elements 1, and

0 < ρ ≤ ρ0 < 1. In this case, for the irrepresentability condition to be satisfied, some

restriction must be imposed. But such restriction is not needed for sequential Lasso.
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Special case II. Without loss of generality, let s0 = {1, . . . , p0}. Assume that

(i) |β1| > |β2| > · · · > |βp0| = Cn−1/2+δ for some constant C and an arbitrarily small

positive δ;

(ii) The correlation matrix Σ has the following structure:

Σs0s0 = I, Σjs0 =
1

p0
signβ(s0)

τ , for j ∈ sc0.

In this case, the irrepresentability condition is violated but the conditions for the

oracle property of SLasso are satisfied.

The verification for the claims on the two special cases are provided in the sup-

plementary document.

4 Simulation Study

In our simulation study, we compare SLasso with adaptive Lasso (ALasso) [5], SCAD

[16],[33], SIS+SCAD [11], forward stepwise regression (FSR) [31] and a forward-

backward greedy algorithm (FoBa) [36]. The first three competing methods have

also been shown to have the oracle property (or selection consistency) under cer-

tain conditions. The FSR and FoBa are included in the comparison because of their

close relationship with SLasso. We do not include CoSaMP in the simulation study

since no concrete approach for the selection of models was given in [22]. For ALasso,

SCAD, SIS+SCAD and FoBa, cross-validation is used to determine the final selected

model as in the cited references. For SLasso and FSR, EBIC is used as the stopping

rule. The R packages parcor ([18]), ncvreg ([1]) , SIS ([12]) and foba are used for the

computation of ALasso, SCAD , SIS+SCAD and FoBa respectively.

We take two groups of settings: group A and group B. In group A, we consider

the diverging pattern (n, p, p0) = (n, [4n0.16], [5en
0.3

]) for n = 100, 200, which is in
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consistence with the assumption in the theory of SLasso. The coefficients are gen-

erated as independent random variables distributed as (−1)u(4n−0.15 + |z|), where

u ∼ Bernoulli(0.4) and z is a normal random variable with mean 0 and satisfies

P (|z| ≥ 0.1) = 0.25. The absolute values of the coefficients are roughly of order

O(n−0.15). The variance of the error term in the linear model is determined by the

following equation:

h =
βτΣβ

βτΣβ + σ2
= 0.8,

where Σ is the variance-covariance matrix of relevant features. Five settings of the

covariance structure for the design matrix X are considered. They are named GA1,

GA2, · · · , GA5. In group B, three settings named GB1, GB2 and GB3, which

are adapted from the cited references, are considered. In these settings, the triplet

(n, p, p0) does not follow the diverging pattern. The details of the above simulation

settings are provided in the supplementary document.

The methods are compared in terms of PDR, FDR, model size (Msize) and predic-

tion mean square error (PMSE). The definition of PDR and FDR are given in (3.3).

The MSize is the number of features selected. The PMSE is the average squared

differences between the observations in a sample and their predicted values obtained

using the model built from another independent sample. Thus, for the computation

of PMSE, we generate two independent samples with the same sample size n in each

replicate of the settings. One sample is used for the selection of features and the

estimation of the coefficients, and the other one is used to compute the PMSE. For

the settings in group A, these quantities are averaged over 200 replicates, for those in

group B, they are averaged over 500 replicates. The results for group A are reported

in Tables 6.1 and 6.2. The results for group B are reported in Table 6.3.

The findings of the simulation study are summarized as follows. First, consider the

performance in prediction. For settings of Group A, ALasso, SCAD, FSR and SLasso
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have comparable PMSE, however, FSR and SLasso have smaller (in GA1 and GA2,

much smaller) MSize. The other two, SIS+SCAD and FoBa, have much larger PMSE.

SIS+SCAD has smaller MSize than all the others and FoBa has much larger MSize

than all the others. FSR and SLasso always have about the same MSize, but SLasso

has smaller PMSE than FSR except in setting GA2. For settings of Group B, in GB1

and GB2, the three methods, SCAD, FSR and SLasso, have comparable PMSE which

are much smaller then the other three methods. SCAD has larger MSize than FSR

and SLasso whose MSize are about the same. In GB3, ALasso, FoBa and FSR have

much smaller PMSE but also have much larger MSize than SCAD, SIS+SCAD and

SLasso.

Now, consider the performance in the identification of relevant features. First, let

our attention be drawn to the performance of FoBa. In all the settings, FoBa has

extremely high FDR which are much higher than all the other methods. In settings

of Group A with sample size 100 and 200, its minimum FDR is respectively 0.909

and 0.949. In the settings of Group B, its minimum FDR is 0.852. Whatever high

PDR it might achieve cannot be justified with such high FDRs. Let alone the fact

that its PDR is even lower than at least one of the other methods in all the settings

except in GA2 with sample size 200 and GB3. FoBa fails the goal of identifying

relevant features. The poor performance of FoBa is not surprising. Though it has

essentially the same mechanism for the selection of features as SLasso, it has an

improper stopping rule. FoBa stops at a forward step when the decrease in the

residual, 1
n
‖ỹ‖22, falls below a threshold of order O(σ2 ln p/n) without penalizing the

increase in the number of features. The backward step is hardly activated since it is

in force only when the increase in the residual by deleting one of the selected features

is less than half of the amount of decrease at the forward step. See §1 and §6. In a

SHR model, 1
n
‖ỹ‖22 can be reduced to zero, it is easy for a feature, relevant or not,
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to reduce 1
n
‖ỹ‖22 by an amount larger than the threshold. Thus, features with high

spurious correlation with the response can be easily selected. Note that the order of

threshold, O(σ2 ln p/n), decreases as n increases, which suggests that, the larger the

sample size, the more features can be selected and hence the higher the FDR. This

is in fact demonstrated in the simulation study, when the sample size goes from 100

to 200 in the settings of Group A, the minimum FDR of FoBa goes from 0.909 to

0.949. It is interestingly contrasted with SLasso cum EBIC whose FDR decreases as

n increases, which is also demonstrated in the simulation study with the settings of

Group A.

In what follows, we compare the performance of other methods. Under settings

GA1 and GA2, which are common settings in many simulation studies, SLasso and

FSR are better than the other methods. They have high PDR and very low FDR.

SLasso and FSR are comparable while FSR is slightly better. ALasso and SCAD have

higher PDR than SLasso and FSR, but their FDR are too much higher. Averaged

over the 4 simulations, FSR, SLasso, ALasso and SCAD have averaged PDR 0.847,

0.823, 0.950 and 0.913 respectively, and averaged FDR 0.042, 0.067, 0.741 and 0.459

respectively. The difference in PDR between FSR, SLasso and ALasso, SCAD, Foba

is not too much, but the difference in FDR is strikingly large. FSR and SLasso are

absolutely much better than SIS+SCAD in terms of both PDR and FDR.

Under settings GA3 - GA5, SCAD is absolutely better than all the other meth-

ods. The performance of SLasso is close to SCAD. SLasso is absolutely better than

SIS+SCAD and FSR. Though ALasso has a slightly higher PDR in a few cases, its

FDR is too high to be acceptable in terms of the identification of relevant features. It

is not surprising that SLasso is absolutely better than FSR. In settings GA3 - GA5,

all the irrelevant features are equally and highly correlated with the relevant features.

In these situations, FSR is more prone to error compared with SLasso, since FSR
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tends to select features which are highly correlated with the features already selected

though they might have less correlation with the current residuals, see the discussion

in §6.

Under settings GB1 and GB2, the pattern is similar to that under settings GA1

and GA2. Under setting GB3, though the condition (which is sufficient but not

necessarily necessary) for the selection consistency of SLasso is not satisfied, SLasso

performs better than all the other methods: it has comparable or higher PDR than

other methods and has the lowest (much lower than the others) FDR.

The simulation study demonstrates that (i) the SLasso cum EBIC method is one

of the best feature selection methods for the purpose of prediction, and (ii) in terms

of the identification of relevant features the performance of SLasso is satisfactory and

robust: it always has a very low FDR and it is always close to the best, though it

is not the best over all the simulation settings. On the contrast, the performance of

SCAD and FSR are erratic over the settings. They are the best in certain settings

but perform much worse in other settings.

5 Real Data Analysis

The data, which was reported in [25], consists of the expression levels of over 31,042

different probes from 120 F2 male rats generated from an intercross experiment. A

cross of SR/JrHsd male rats and SHRSP female rats was performed to generate F1

and the F1 rats were intercrossed to generate the F2 rats. The probes that were not

expressed in the eye or that lacked sufficient variation were excluded. A probe was

considered expressed if its maximum expression value observed among the 120 F2

rats was greater than the 25th percentile of the entire set of RMA (robust multi-

chip averaging) expression values. A probe was considered “sufficiently variable” if it

exhibited at least 2-fold variation in expression level among the 120 F2 rats. A total
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of 18,976 probes that met these criteria were retained. Among the 18,976 probes,

there is one, 1389163 at, from gene TRIM32. This gene was found to cause Bardet-

Biedl syndrom [4]. Of interest is to find the probes among the remaining 18, 975

probes that are most related to TRIM32. This has been studied by using different

methods in the literature, see [5], [16], [6], [13] and [27]. In this section, we apply the

five methods considered in our simulation study, i.e., ALasso, SCAD, SIS+SCAD,

FSR and SLasso, to the above problem. The response variable is the expression level

of probe 1389163 at. The features are the expression levels of the remaining 18, 975

probes. The expression levels are standardized to have mean 0 and standard deviation

1 in the analysis.

Following the same strategy of [5], the probes are first screened according to their

variances and the top 3,000 probes with the largest variances are retained for further

selection. But, unlike in [5] where these 3,000 probes were further reduced to 200

probes that are marginally most correlated with TRIM32, the concerned five methods

are directly applied to the 3,000 probes. The numbers of probes selected from these

3,000 probes by ALasso, SCAD, SIS+SCAD, FSR and SLasso are 21, 28, 5, 3 and

2 respectively. The ID of the selected probes are reported in Table 6.4. The two

probes selected by SLasso, i.e., 1383110 at and 1392692 at, are also selected by FSR

and ALasso. But they are not selected by SCAD and SIS+SCAD. The additional

probe selected by FSR, 1389584 at, is also selected by SCAD and ALasso. There is

an intersection of 7 probes selected by ALasso and SCAD. There is no intersection of

the probes selected by SIS+SCAD with any other methods.

It is interesting to note that one of the probes selected by SLasso, i.e., 1383110 at,

is also detected by other methods (Lasso, Scaled Lasso, Scaled MC) and the other

one, 1392692 at, is also detected by Lasso, as reported in [27]. Combining all these

findings together and taking into account the low FDR of SLasso evidenced in the
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simulation studies, we have a strong belief that the two probes selected by SLasso are

associated with TRIM32.

6 Discussion

The properties of SLasso shows that SLasso and the orthogonal matching pursuit

(OMP) differ only at steps where the partial positive cone condition is violated. When

the partial positive cone condition is satisfied at each step, SLasso is equivalent to

OMP. Since the set sTEMP at the steps of SLasso is rarely non-singleton, the procedure

of SLasso is essentially the same as OMP, and hence, as a by-product of the paper,

we reveal new properties of OMP other than those discovered in [2] [29] [30] under

much weaker conditions.

Since the mechanism for the selection of features in FoBa and CoSaMP are essen-

tially the same as OMP, our results also reveal that the backward steps in FoBa are

indeed not needed and that the iterative procedure of CoSaMP to get the best sparse

set at a given sparsity level is not really necessary. The crucial issue in all these

procedures is actually the stopping rule. Some ad hoc stopping rules are adopted

for OMP in [2]. These rules compare the norm (L2 or L∞) of the residual ỹ with

an upper bound of the norm of error ε. The procedure continues until the norm of

the residual falls below the upper bound. For example, when ε ∼ N(0, σ2I), ‖ỹ‖2

is compared with σ
√
n+ 2

√
n lnn. With this rule, the OMP can correctly select s0

with probability 1 − 1/n, if minj∈s0 |βj| ≥
2σ
√
n+2
√
n lnn

1−(2p0−1)mi and mi < 1
2p0−1 , where mi is

the mutual incoherence defined by mi = maxi 6=j |corr(xi,xj)|. The limitations of

this rule are obvious. First, its effectiveness relies on the strict condition mi < 1
2p0−1

which essentially imposes mutual independence among the features when p0 →∞, as

assumed in our setting. Second, the lower bound required for minj∈s0 |βj| is too large

compared with the requirement in SLasso that minj∈s0 |βj| > Cn−δ where δ < 1/2−κ
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for some κ < 1/2, see condition A3 and the remark that follows in §3.1. Third, it

requires an accurate estimate of σ which cannot be easily obtained without knowing

the true model. The other ad hoc stopping rules considered in [2] have the same

limitations. A similar stopping rule is considered in [36] for FoBa. The rule compares

the decrease in 1
n
‖ỹ‖22 with a threshold of order O(σ2 ln p/n) at the forward steps.

Similar comments can be made on this stopping rule. A common nature of the above

stopping rules is that only the contribution of the features to the decrease of the

residual is taken into account, the contribution is not penalized by the increase in the

number of features. This common nature is a crucial drawback. It has the potential

to select more irrelevant features, which is demonstrated for FoBa in the simulation

studies. As a contrast, by using EBIC as the stopping rule, a feature can be selected

only when its contribution to the decrease of the residual is large enough to compen-

sate the increase in the number of features. This is perhaps the main reason why

SLasso cum EBIC is selection consistent under much weaker conditions.

Let g1(j) = |xτj [I−H(s∗k)]y|, where H(s∗k) is the projection matrix of the space

spanned by the features in s∗k. SLasso selects the next features among the features

that maximize g1(j) after the sub model s∗k is selected. This is to be compared with

FSR that selects the next feature by minimizing RSS(j) = yτ [I −H(s∗k ∪ {j})]y

which is equivalent to maximizing g2(j) =
|xτj [I−H(s∗k)]y|√
xτj [I−H(s∗k)]xj

. The equivalence follows

from (2.3). SLasso selects the next feature that has the highest correlation with the

current residual but the FSR selects the next feature that has the highest inflated

correlation with the current residual by an inflating factor [xτj [I −H(s∗k)]xj]
−1/2.

The more correlated the xj is with the features in s∗k, the larger the inflating factor.

If two features have the same absolute correlation with the current residual, the FSR

will select the one that is more correlated with the features in s∗k. If one feature has

a lower correlation with the current residual but is more correlated with the features
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in s∗k than another feature, it might turn out that this feature has a higher inflated

correlation and is selected by FSR. Obviously, this is a disadvantage of FSR in terms

of the identification of relevant features, especially when high spurious correlations

present.

Like SLasso, solution path of Lasso, LAR and variants of LAR also select the

next feature that has the highest correlation with the current residual. But, in these

methods, the current residual is obtained from a shrunk estimate of Ey, i.e., they

select xj that maximizes g3(j) = |xτj [y −X(s∗k)β̃(s∗k)]| where β̃(s∗k) is a shrunk

estimate. In the shrunk estimate, the effects on y of the features in s∗k are not

fully counted. This leaves more chance for those features that have high spurious

correlations with the features in s∗k to be selected in subsequent steps than in the

case of SLasso. This is a potential disadvantage for the identification of relevant

features.
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Table 6.1: Comparison of SLasso with ALasso, SCAD, SIS+SCAD and FSR in terms
of PDR, FDR, PMSE and model size (MSize) averaged over 200 simulation replicates
in Group A settings (sample size n = 100, numbers in parentheses are standard
deviations)

Setting Methods MSize PDR FDR PMSE
GA1 ALasso 37.8(12.5) .999(.009) .767(.072) 13.714(2.837)

SCAD 14.9(3.8) .998(.022) .430(.142) 10.523(2.943)
SIS+SCAD 5.0(0.1) .488(.098) .219(.157) 25.135(5.091)
FoBa 87.3(1.3) .998(.020) .909(.002) 32.583(6.759)
FSR 8.3(1.4) .963(.149) .063(.098) 11.250(5.782)
SLasso 8.4(1.3) .968(.134) .071(.098) 11.129(5.233)

GA2 ALasso 26.8(15.8) .861(.112) .674(.142) 17.07(3.334)
SCAD 13.7(6.1) .724(.189) .513(.179) 18.178(4.162)
SIS+SCAD 4.9(0.3) .484(.066) .210(.086) 16.68(3.142)
FoBa 87.2(1.6) .802(.169) .926(.015) 48.407(13.017)
FSR 5.0(1.7) .579(.201) .057(.104) 17.554(3.995)
SLasso 4.6(1.6) .511(.176) .091(.133) 19.236 (4.323)

GA3 ALasso 15.1(8.1) .999(.009) .356(.242) 4.676(0.82)
SCAD 8.1(0.7) .979(.099) .029(.099) 4.45(0.933)
SIS+SCAD 5.0(0.3) .543(.068) .126(.100) 17.033(3.178)
FoBa 87.2(1.4) .862(.042) .921(.004) 15.121(3.794)
FSR 8.2(0.8) .745(.190) .270(.169) 5.658(1.290)
SLasso 8.2(1.0) .932(.153) .092(.143) 4.892(1.266)

GA4 ALasso 11.2(5.2) 1.00(.000) .188(.225) 2.312(0.419)
SCAD 8.1(0.1) .999(.009) .000(.000) 2.582(1.049)
SIS+SCAD 4.9(0.4) .527(.076) .132(.115) 10.02(2.652)
FoBa 86.9(1.4) .873(.032) .920(.003) 7.679(2.419)
FSR 6.7(3.4) .779(.398) .049(.086) 5.766(6.555)
SLasso 6.5(3.5) .784(.409) .028(.059) 5.745(6.525)

GA5 ALasso 11.2(5.2) 1.00(.000) .190(.226) 5.196(0.842)
SCAD 8.1(0.1) .999(.012) .000(.000) 5.147(1.031)
SIS+SCAD 5.1(0.1) .504(.034) .190(.046) 10.324(1.601)
FoBa 87.1(1.5) .871(.021) .920(.002) 17.665(4.927)
FSR 7.3(2.0) .782(.167) .124(.104) 7.500(2.734)
SLasso 7.5(1.7) .911(.188) .027(.057) 6.440(2.768)
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Table 6.2: Comparison of SLasso with ALasso, SCAD, SIS+SCAD and FSR in terms
of PDR, FDR, PMSE and model size (MSize) averaged over 200 simulation replicates
in Group A settings (sample size n = 200, numbers in parentheses are standard
deviations)

Setting Methods MSize PDR FDR PMSE
GA1 ALasso 49.0(18.0) 1.00(.000) .791(.077) 10.937(1.463)

SCAD 13.6(4.8) 1.00(.000) .283(.183) 8.638(0.897)
SIS+SCAD 8.7(0.5) .793(.077) .181(.086) 12.355(3.309)
FoBa 176.2(1.7) 1.00(.000) .949(.000) 28.439(4.261)
FSR 9.4(0.7) 1.00(.000) .035(.060) 8.688(1.024)
SLasso 9.4(0.7) 1.00(.000) .035(.061) 8.683(1.025)

GA2 ALasso 40.6(19.8) .941(.072) .735(.140) 15.297(2.03)
SCAD 23.7(7.3) .931(.110) .612(.127) 14.159(2.928)
SIS+SCAD 8.1(0.8) .661(.028) .255(.076) 14.715(1.715)
FoBa 176.2(1.6) .943(.102) .952(.005) 41.228(8.005)
FSR 7.9(1.7) .846(.179) .035(.070) 13.541(2.915)
SLasso 7.8(2.1) .796(.190) .073(.100) 14.462(3.207)

GA3 ALasso 25.5(15.9) .956(.071) .507(.283) 4.205(0.539)
SCAD 9.1(1.1) .972(.121) .031(.124) 3.963(0.62)
SIS+SCAD 8.9(0.4) .864(.064) .128(.046) 4.498(1.987)
FoBa 176.3(1.5) .882(.034) .955(.002) 12.544(2.252)
FSR 9.2(0.9) .708(.206) .311(.183) 4.688(0.672)
SLasso 9.2(1.0) .873(.209) .148(.190) 4.272(0.714)

GA4 ALasso 13.3(6.4) 1.00(.000) .215(.242) 2.186(0.267)
SCAD 9.0(.0) 1.00 (.000) .000(.000) 2.320(0.753)
SIS+SCAD 8.7(0.7) .449(.064) .535(.061) 3.327(1.679)
FoBa 174.6(1.5) .888(.011) .954(.001) 6.875(1.229)
FSR 9.3(0.6) .993(.043) .037(.074) 2.207(0.297)
SLasso 9.2(0.6) 1.00(.000) .023(.052) 2.183(0.268)

GA5 ALasso 15.7(9.5) .986(.044) .276(.284) 5.303(0.622)
SCAD 9.0 (0.1) .999(.011) .000(.000) 5.199(0.71)
SIS+SCAD 7.8(0.8) .681(.066) .206(.070) 7.975(1.258)
FoBa 175.1(1.6) .886(.017) .954(.001) 16.644(2.932)
FSR 9.4(0.6) .943(.086) .091(.100) 5.545(0.799)
SLasso 9.3(0.6) 1.00(.000) .024(.054) 5.241(0.608)
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Table 6.3: Comparison of SLasso with ALasso, SCAD, SIS+SCAD and FSR in terms
of PDR, FDR, PMSE and model size (MSize) averaged over 500 simulation replicates
in Group B settings ( numbers in parentheses are standard deviations)

Setting Methods MSize PDR FDR PMSE
GB1 ALasso 45.3(13.4) .858(.072) .695(.079) 5.514(0.853)

SCAD 13.0(2.8) .731(.078) .135(.115) 4.237(0.893)
SIS+SCAD 3.0(0.7) .198(.042) .016(.062) 21.581(1.881)
FoBa 87.0(1.6) .858(.076) .852(.013) 9.750(2.282)
FSR 11.2(1.3) .705(.066) .050(.067) 4.009(0.973)
SLasso 11.2(2.1) .677(.109) .083(.082) 4.503(2.654)

GB2 ALasso 56.5(14.7) .881(.077) .752(.059) 6.802(1.371)
SCAD 17.2(4.0) .792(.065) .277(.136) 3.858(0.997)
SIS+SCAD 4.7(0.6) .259(.041) .175(.127) 15.327(2.527)
FoBa 86.8(1.6) .855(.056) .852(.010) 12.469(3.468)
FSR 11.0(2.2) .696(.128) .040(.062) 4.349(1.625)
SLasso 10.5(2.6) .660(.155) .053(.073) 4.966(2.630)

GB3 ALasso 69.6(5.9) .852(.051) .877(.012) 7.893(4.293)
SCAD 8.8(2.6) .583(.104) .308(.125) 28.737(10.868)
SIS+SCAD 4.3(0.7) .000(.000) 1.00(.000) 58.334(10.717)
FoBa 82.5(1.7) .997(.018) .879(.004) 7.701(3.389)
FSR 18.2(3.0) .785(.122) .561(.075) 8.638(7.522)
SLasso 9.8 (3.5) .754(.31) .262(.146) 19.470(20.808)
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Table 6.4: The ID of the probes selected by ALasso, SCAD, SIS+SCAD, FSR and
SLasso in the analysis of the rat data

Method Probes ID
ALasso 1387060 at 1388538 at 1380070 at 1370052 at 1382452 at

1379079 at 1397489 at 1374131 at 1383110 at 1389584 at
1392692 at 1379971 at 1385687 at 1369353 at 1374106 at
1383673 at 1379495 at 1383749 at 1382835 at 1395415 at
1383996 at

SCAD 1394689 at 1370434 a at 1375724 at 1378765 at 1375139 at
1388538 at 1370052 at 1382452 at 1377781 at 1383841 at
1380311 at 1379460 at 1385921 at 1384886 at 1384136 at
1387111 at 1390789 at 1376693 at 1389584 at 1389231 at

1390788 a at 1367741 at 1374106 at 1387455 a at 1383749 at
1379803 at 1383996 at 1382633 at

SIS+SCAD 1377546 at 1396809 at 1381430 at 1393543 at 1372481 at
FSR 1383110 at 1392692 at 1389584 at
SLasso 1383110 at 1392692 at
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