Unbiased tests

When a UMP test does not exist, we may use the same approach used in estimation problems, i.e., imposing a reasonable restriction on the tests. One such restriction is unbiasedness. A UMP test T of size α has the property that

$$\beta_T(P) \leq \alpha, \quad P \in \mathcal{P}_0 \quad \text{and} \quad \beta_T(P) \geq \alpha, \quad P \in \mathcal{P}_1, \quad (1)$$

since T is at least as good as the silly test $T \equiv \alpha$. This leads to the following definition.

Definition 6.3

Let α be a given level of significance. A test T for $H_0 : P \in \mathcal{P}_0$ versus $H_1 : P \in \mathcal{P}_1$ is said to be unbiased of level α if and only if (1) holds. A test of size α is called a *uniformly most powerful unbiased* (UMPU) test if and only if it is UMP within the class of unbiased tests of level α.

The consideration of UMPU tests can be confined to the tests based on a sufficient statistics. Why?
UMP tests in exponential families

Consider the following hypotheses:

\[H_0 : \theta \in \Theta_0 \text{ versus } H_1 : \theta \in \Theta_1, \]

where \(\theta = \theta(P) \) is a functional from \(\mathcal{P} \) onto \(\Theta \) and \(\Theta_0 \) and \(\Theta_1 \) are disjoint and \(\Theta_0 \cup \Theta_1 = \Theta \). (\(\mathcal{P}_j = \{P : \theta \in \Theta_j\}, j = 0, 1.\))

Definition 6.4 (Similarity)

Consider the hypotheses \(H_0 : \theta \in \Theta_0 \) vs \(H_1 : \theta \in \Theta_1 \). Let \(\alpha \) be a given level of significance and let \(\bar{\Theta}_{01} \) be the common boundary of \(\Theta_0 \) and \(\Theta_1 \), i.e., the set of points \(\theta \) that are points or limit points of both \(\Theta_0 \) and \(\Theta_1 \).

A test \(T \) is similar on \(\bar{\Theta}_{01} \) if and only if \(\beta_T(P) = \alpha \) for all \(\theta \in \bar{\Theta}_{01} \).

Remark

It is more convenient to work with similarity than to work with unbiasedness for testing \(H_0 : \theta \in \Theta_0 \) vs \(H_1 : \theta \in \Theta_1 \).
Continuity of the power function

For a given test T, the power function $\beta_T(P)$ is said to be continuous in θ if and only if for any $\{\theta_j : j = 0, 1, 2, \ldots\} \subset \Theta$, $\theta_j \to \theta_0$ implies $\beta_T(P_j) \to \beta_T(P_0)$, where $P_j \in \mathcal{P}$ satisfying $\theta(P_j) = \theta_j, j = 0, 1, \ldots$. If β_T is a function of θ, then this continuity property is simply the continuity of $\beta_T(\theta)$.

Lemma 6.5

Consider hypotheses $H_0 : \theta \in \Theta_0$ vs $H_1 : \theta \in \Theta_1$. Suppose that, for every T, $\beta_T(P)$ is continuous in θ. If T_* is uniformly most powerful among all similar tests and has size α, then T_* is a UMPU test.

Proof

Under the continuity assumption on β_T, the class of similar tests contains the class of unbiased tests. Since T_* is uniformly at least as powerful as the test $T \equiv \alpha$, T_* is unbiased. Hence, T_* is a UMPU test.
Neyman structure

Let $U(X)$ be a sufficient statistic for $P \in \bar{P} = \{P : \theta \in \bar{\Theta}_{01}\}$ and let \bar{P}_U be the family of distributions of U as P ranges over \bar{P}. A test is said to have Neyman structure w.r.t. U if

$$E[T(X)|U] = \alpha \quad \text{a.s. } \bar{P}_U,$$

Clearly, if T has Neyman structure, then

$$E[T(X)] = E\{E[T(X)|U]\} = \alpha \quad P \in \bar{P},$$

i.e., T is similar on $\bar{\Theta}_{01}$. If all tests similar on $\bar{\Theta}_{01}$ have Neyman structure w.r.t. U, then working with tests having Neyman structure is the same as working with tests similar on $\bar{\Theta}_{01}$.

Lemma 6.6

Let $U(X)$ be a sufficient statistic for $P \in \bar{P}$. A necessary and sufficient condition for all tests similar on $\bar{\Theta}_{01}$ to have Neyman structure w.r.t. U is that U is boundedly complete for $P \in \bar{P}$.
Proof

(i) Suppose first that \(U \) is boundedly complete for \(P \in \bar{P} \).
Let \(T(X) \) be a test similar on \(\bar{\Theta}_{01} \).
Then \(E[T(X) - \alpha] = 0 \) for all \(P \in \bar{P} \).
From the boundedness of \(T(X) \), \(E[T(X)|U] \) is bounded.
Since \(E\{E[T(X)|U] - \alpha\} = E[T(X) - \alpha] = 0 \) for all \(P \in \bar{P} \) and \(U \)
is boundedly complete, \(E[T(X)|U] = \alpha \) a.s. \(\bar{P}_U \), i.e., \(T \) has
Neyman structure.

(ii) Suppose now that all tests similar on \(\bar{\Theta}_{01} \) have Neyman
structure w.r.t. \(U \).
Suppose also that \(U \) is not boundedly complete for \(P \in \bar{P} \).
Then there is a function \(h \) such that \(|h(u)| \leq C, E[h(U)] = 0 \) for
all \(P \in \bar{P} \), and \(h(U) \neq 0 \) with positive probability for some \(P \in \bar{P} \).
Let \(T(X) = \alpha + ch(U) \), where \(c = \min\{\alpha, 1 - \alpha\}/C \).
Then \(T \) is a test similar on \(\bar{\Theta}_{01} \) but \(T \) does not have Neyman
structure w.r.t. \(U \) (because \(h(U) \neq 0 \)).
Thus, \(U \) must be boundedly complete for \(P \in \bar{P} \).
This proves the result.
Theorem 6.4 (UMPU tests in exponential families)

Suppose that X has the following p.d.f. w.r.t. a σ-finite measure:

$$f_{\theta, \varphi}(x) = \exp \{\theta Y(x) + \varphi^T U(x) - \zeta(\theta, \varphi)\},$$

where θ is a real-valued parameter, φ is a vector-valued parameter, and Y (real-valued) and U (vector-valued) are statistics.

(i) For testing $H_0 : \theta \leq \theta_0$ versus $H_1 : \theta > \theta_0$, a UMPU test of size α is

$$T^*_*(Y, U) = \begin{cases} 1 & Y > c(U) \\ \gamma(U) & Y = c(U) \\ 0 & Y < c(U), \end{cases}$$

where $c(u)$ and $\gamma(u)$ are Borel functions determined by

$$E_{\theta_0}[T^*_*(Y, U)|U = u] = \alpha \text{ for every } u$$

and E_{θ_0} is the expectation w.r.t. $f_{\theta_0, \varphi}$.

(ii) For testing $H_0 : \theta \leq \theta_1$ or $\theta \geq \theta_2$ versus $H_1 : \theta_1 < \theta < \theta_2$, a UMPU test of size α is

$$T^*_*(Y, U) = \begin{cases} 1 & c_1(U) < Y < c_2(U) \\ \gamma_i(U) & Y = c_i(U), \ i = 1, 2, \\ 0 & Y < c_1(U) \text{ or } Y > c_2(U), \end{cases}$$
where \(c_i(u) \)'s and \(\gamma_i(u) \)'s are Borel functions determined by

\[
E_{\theta_1}[T_*(Y, U)|U = u] = E_{\theta_2}[T_*(Y, U)|U = u] = \alpha \quad \text{for every } u.
\]

(iii) For testing \(H_0 : \theta_1 \leq \theta \leq \theta_2 \) versus \(H_1 : \theta < \theta_1 \) or \(\theta > \theta_2 \), a UMPU test of size \(\alpha \) is

\[
T_*(Y, U) = \begin{cases}
1 & \text{if } Y < c_1(U) \text{ or } Y > c_2(U) \\
\gamma_i(U) & \text{if } Y = c_i(U), \ i = 1, 2, \\
0 & \text{if } c_1(U) < Y < c_2(U),
\end{cases}
\]

where \(c_i(u) \)'s and \(\gamma_i(u) \)'s are Borel functions determined by

\[
E_{\theta_1}[T_*(Y, U)|U = u] = E_{\theta_2}[T_*(Y, U)|U = u] = \alpha \quad \text{for every } u.
\]

(iv) For testing \(H_0 : \theta = \theta_0 \) versus \(H_1 : \theta \neq \theta_0 \), a UMPU test of size \(\alpha \) is given by \(T_*(Y, U) \) in (iii), where \(c_i(u) \)'s and \(\gamma_i(u) \)'s are Borel functions determined by

\[
E_{\theta_0}[T_*(Y, U)|U = u] = \alpha \quad \text{for every } u
\]

and

\[
E_{\theta_0}[T_*(Y, U)Y|U = u] = \alpha E_{\theta_0}(Y|U = u) \quad \text{for every } u.
\]
Proof

By sufficiency, we only need to consider tests that are functions of \((Y, U)\).

It follows from Theorem 2.1(i) that the p.d.f. of \((Y, U)\) (w.r.t. a \(\sigma\)-finite measure) is in a natural exponential family of the form \(\exp \{\theta y + \varphi^T u - \zeta(\theta, \varphi)\}\) and, given \(U = u\), the p.d.f. of the conditional distribution of \(Y\) (w.r.t. a \(\sigma\)-finite measure \(\nu_u\)) is in a natural exponential family of the form \(\exp \{\theta y - \zeta_u(\theta)\}\).

Hypotheses in (i)-(iv) are of the form \(H_0 : \theta \in \Theta_0\) vs \(H_1 : \theta \in \Theta_1\) with \(\bar{\Theta}_{01} = \{(\theta, \varphi) : \theta = \theta_0\}\) or \(\{(\theta, \varphi) : \theta = \theta_i, i = 1, 2\}\).

In case (i) or (iv), \(U\) is sufficient and complete for \(P \in \bar{P}\) and, hence, Lemma 6.6 applies.

In case (ii) or (iii), applying Lemma 6.6 to each \(\{(\theta, \varphi) : \theta = \theta_i\}\) also shows that working with tests having Neyman structure is the same as working with tests similar on \(\bar{\Theta}_{01}\).

By Theorem 2.1, the power functions of all tests are continuous and, hence, Lemma 6.5 applies.
Thus, for (i), it suffices to show T_\ast is UMP among all tests T satisfying
\begin{equation}
E_{\theta_0}[T(Y, U)|U = u] = \alpha \quad \text{for every } u
\end{equation}
and for part (ii) or (iii)), it suffices show T_\ast is UMP among all tests T satisfying
\begin{equation}
E_{\theta_1}[T(Y, U)|U = u] = E_{\theta_2}[T(Y, U)|U = u] = \alpha \quad \text{for every } u.
\end{equation}
For (iv), any unbiased T should satisfy (2) and
\begin{equation}
\frac{\partial}{\partial \theta} E_{\theta, \varphi}[T(Y, U)] = 0, \quad \theta \in \bar{\Theta}_{01}.
\end{equation}
One can show (exercise) that (3) is equivalent to
\begin{equation}
E_{\theta, \varphi}[T(Y, U)Y - \alpha Y] = 0, \quad \theta \in \bar{\Theta}_{01}.
\end{equation}
Using the argument in the proof of Lemma 6.6, one can show (exercise) that (4) is equivalent to
\begin{equation}
E_{\theta_0}[T(Y, U)Y|U = u] = \alpha E_{\theta_0}(Y|U = u) \quad \text{for every } u.
\end{equation}
Hence, for (iv), it suffices to show T_\ast is UMP among all tests T satisfying (2) and (5).
Note that the power function of any test \(T(Y, U) \) is
\[
\beta_T(\theta, \varphi) = \int \left[\int T(y, u) dP_{Y|U=u}(y) \right] dP_U(u).
\]
Thus, it suffices to show that for every fixed \(u \) and \(\theta \in \Theta_1 \), \(T_* \) maximizes
\[
\int T(y, u) dP_{Y|U=u}(y)
\]
over all \(T \) subject to the given side conditions.
Since \(P_{Y|U=u} \) is in a one-parameter exponential family, the results in (i) and (ii) follow from Corollary 6.1 and Theorem 6.3, respectively. The result in (iii) follows from Theorem 6.3(ii) by considering \(1 - T_* \).

To prove the result in (iv), it suffices to show that if \(Y \) has the p.d.f. given by \(\exp \{ \theta y - \zeta_u(\theta) \} \) and if \(u \) is treated as a constant in (2) and (5), \(T_* \) in (iii) with a fixed \(u \) is UMP subject to conditions (2) and (5). We now omit \(u \) in the following proof for (iv), which is very similar to the proof of Theorem 6.3.
First, \((\alpha, \alpha E_{\theta_0}(Y))\) is an interior point of the set of points \((E_{\theta_0}[T(Y)], E_{\theta_0}[T(Y)Y])\) as \(T\) ranges over all tests of the form \(T(Y)\). By Lemma 6.2 and Proposition 6.1, for testing \(\theta = \theta_0\) versus \(\theta = \theta_1\), the UMP test is equal to 1 when

\[
(k_1 + k_2 y)e^{\theta_0 y} < C(\theta_0, \theta_1)e^{\theta_1 y},
\]

where \(k_i\)'s and \(C(\theta_0, \theta_1)\) are constants. This inequality is equivalent to

\[
a_1 + a_2 y < e^{by}
\]

for some constants \(a_1\), \(a_2\), and \(b\). This region is either one-sided or the outside of an interval. By Theorem 6.2(ii), a one-sided test has a strictly monotone power function and therefore cannot satisfy (5). Thus, this test must have the form of \(T_*\) in (iii). Since \(T_*\) in (iii) does not depend on \(\theta_1\), by Lemma 6.1, it is UMP over all tests satisfying (2) and (5); in particular, the test \(\equiv \alpha\). Thus, \(T_*\) is UMPU.

Finally, it can be shown that all the \(c\)- and \(\gamma\)-functions in (i)-(iv) are Borel functions of \(u\) (see Lehmann (1986, p. 149)).
Example 6.11
A problem arising in many different contexts is the comparison of two treatments. If the observations are integer-valued, the problem often reduces to testing the equality of two Poisson distributions (e.g., a comparison of the radioactivity of two substances or the car accident rate in two cities) or two binomial distributions (when the observation is the number of successes in a sequence of trials for each treatment).

Consider first the Poisson problem in which X_1 and X_2 are independently distributed as the Poisson distributions $P(\lambda_1)$ and $P(\lambda_2)$, respectively. The p.d.f. of $X = (X_1, X_2)$ is

$$
\left[e^{-(\lambda_1+\lambda_2)} / x_1! x_2! \right] \exp \left\{ x_2 \log(\lambda_2/\lambda_1) + (x_1 + x_2) \log \lambda_1 \right\}
$$

w.r.t. the counting measure on

$$
\{(i,j) : i = 0, 1, 2, ..., j = 0, 1, 2, ...\}.
$$
Example 6.11 (continued)

Let $\theta = \log(\lambda_2/\lambda_1)$. Then hypotheses such as $\lambda_1 = \lambda_2$ and $\lambda_1 \geq \lambda_2$ are equivalent to $\theta = 0$ and $\theta \leq 0$, respectively.

The p.d.f. of X is in a multiparameter exponential family with $\varphi = \log \lambda_1$, $Y = X_2$, and $U = X_1 + X_2$.

Thus, Theorem 6.4 applies.

To obtain various tests in Theorem 6.4, it is enough to derive the conditional distribution of $Y = X_2$ given $U = X_1 + X_2 = u$.

Using the fact that $X_1 + X_2$ has the Poisson distribution $P(\lambda_1 + \lambda_2)$, one can show that

$$P(Y = y|U = u) = \binom{u}{y} p^y (1-p)^{u-y} I_{\{0,1,\ldots,u\}}(y), \quad u = 0, 1, 2, \ldots,$$

where $p = \lambda_2/(\lambda_1 + \lambda_2) = e^\theta/(1 + e^\theta)$.

This is the binomial distribution $Bi(p, u)$.

On the boundary set $\bar{\Theta}_{01}$, $\theta = \theta_j$ (a known value) and the distribution $P_{Y|U=u}$ is known.
Example 6.11 (continued)

Consider next the binomial problem in which $X_j, j = 1, 2$, are independently distributed as the binomial distributions $Bi(p_j, n_j)$, $j = 1, 2$, respectively, where n_j’s are known but p_j’s are unknown. The p.d.f. of $X = (X_1, X_2)$ is

$$
\binom{n_1}{x_1} \binom{n_2}{x_2} (1 - p_1)^{n_1} (1 - p_2)^{n_2} \exp \left\{ x_2 \log \frac{p_2(1-p_1)}{p_1(1-p_2)} + (x_1 + x_2) \log \frac{p_1}{(1-p_1)} \right\}
$$

w.r.t. the counting measure on

$$\{(i,j) : i = 0, 1, ..., n_1, j = 0, 1, ..., n_2\}.$$

This p.d.f. is in a multiparameter exponential family with

$$\theta = \log \frac{p_2(1-p_1)}{p_1(1-p_2)}, \ Y = X_2, \ \text{and} \ U = X_1 + X_2.$$

Thus, Theorem 6.4 applies.

Note that hypotheses such as $p_1 = p_2$ and $p_1 \geq p_2$ are equivalent to $\theta = 0$ and $\theta \leq 0$, respectively.
Example 6.11 (continued)

Using the joint distribution of \((X_1, X_2)\), one can show (exercise) that

\[
P(Y = y | U = u) = K_u(\theta) \binom{n_1}{u - y} \binom{n_2}{y} e^{\theta y} I_A(y), \quad u = 0, 1, \ldots, n_1 + n_2,
\]

where

\[
A = \{y : y = 0, 1, \ldots, \min\{u, n_2\}, u - y \leq n_1\}
\]

and

\[
K_u(\theta) = \left[\sum_{y \in A} \binom{n_1}{u - y} \binom{n_2}{y} e^{\theta y} \right]^{-1}.
\]

If \(\theta = 0\), this distribution reduces to a known distribution: the hypergeometric distribution \(HG(u, n_2, n_1)\) (Table 1.1, page 18).