ST5224: Advanced Statistical Theory II

Chen Zehua

Department of Statistics & Applied Probability

Thursday, March 29, 2012
An LR test is often equivalent to a test based on a statistic $Y(X)$ whose distribution under H_0 can be used to determine the rejection region of the LR test with size α.

When this technique fails, it is difficult or even impossible to find an LR test with size α, even if the c.d.f. of $\lambda(X)$ is continuous.

In the i.i.d. case we can obtain the asymptotic distribution (under H_0) of the likelihood ratio $\lambda(X)$ so that an LR test having asymptotic significance level α can be obtained.

In many problems Θ_0 is determined by $H_0 : \theta = g(\vartheta)$, where ϑ is a $(k - r)$-vector of unknown parameters and g is a continuously differentiable function from \mathbb{R}^{k-r} to \mathbb{R}^k with a full rank $\partial g(\vartheta)/\partial \vartheta$. For example, if $\Theta = \mathbb{R}^2$ and $\Theta_0 = \{ (\theta_1, \theta_2) \in \Theta : \theta_1 = 0 \}$, then $\vartheta = \theta_2$, $g_1(\vartheta) = 0$, and $g_2(\vartheta) = \vartheta$.
Theorem 6.5 (Asymptotic distribution of likelihood ratio)

Assume the conditions in Theorem 4.16.
Suppose that \(H_0 : \theta = g(\vartheta) \), where \(\vartheta \) is a \((k - r)\)-vector of unknown parameters and \(g \) is a continuously differentiable function from \(\mathbb{R}^{k-r} \) to \(\mathbb{R}^{k} \) with a full rank \(\partial g(\vartheta) / \partial \vartheta \).
Under \(H_0 \), \(-2 \log \lambda_n \rightarrow_d \chi^2_r\), where \(\lambda_n = \lambda(X) \) and \(\chi^2_r \) is a random variable having the chi-square distribution \(\chi^2_r \).
Consequently, the LR test with rejection region \(\lambda_n < e^{-\chi^2_{r,\alpha}/2} \) has asymptotic significance level \(\alpha \), where \(\chi^2_{r,\alpha} \) is the \((1 - \alpha)\)th quantile of the chi-square distribution \(\chi^2_r \).

Proof
Without loss of generality, we assume that there exist an MLE \(\hat{\theta} \) and an MLE \(\hat{\vartheta} \) under \(H_0 \) such that
\[
\lambda_n = \sup_{\theta \in \Theta_0} \frac{\ell(\theta)}{\sup_{\theta \in \Theta} \ell(\theta)} = \frac{\ell(g(\hat{\vartheta}))}{\ell(\hat{\theta})}.
\]
Let \(s_n(\theta) = \partial \log \ell(\theta) / \partial \theta \) and \(I_1(\theta) \) be the Fisher information about \(\theta \) contained in \(X_1 \).
Following the proof of Theorem 4.17 in §4.5.2, we can obtain that
\[\sqrt{n}l_1(\theta)(\hat{\theta} - \theta) = n^{-1/2}s_n(\theta) + o_p(1), \]
and
\[2[\log \ell(\hat{\theta}) - \log \ell(\theta)] = n(\hat{\theta} - \theta)^\top l_1(\theta)(\hat{\theta} - \theta) + o_p(1). \]

Then
\[2[\log \ell(\hat{\theta}) - \log \ell(\theta)] = n^{-1}[s_n(\theta)]^\top [l_1(\theta)]^{-1}s_n(\theta) + o_p(1). \]

Similarly, under \(H_0 \),
\[2[\log \ell(g(\hat{\varphi})) - \log \ell(g(\varphi))] = n^{-1}[\tilde{s}_n(\varphi)]^\top [\tilde{l}_1(\varphi)]^{-1}\tilde{s}_n(\varphi) + o_p(1), \]
where \(\tilde{s}_n(\varphi) = \partial \log \ell(g(\varphi))/\partial \varphi = D(\varphi)s_n(g(\varphi)), \)
\(D(\varphi) = \partial g^\top(\varphi)/\partial \varphi, \) and \(\tilde{l}_1(\varphi) \) is the Fisher information about \(\varphi \) (under \(H_0 \)) contained in \(X_1 \). Thus, we obtain that, under \(H_0 \),
\[-2 \log \lambda_n = 2[\log \ell(\hat{\theta}) - \log \ell(g(\hat{\varphi}))] = n^{-1}[s_n(g(\varphi))]^\top B(\varphi)s_n(g(\varphi)) + o_p(1) \]
where \(B(\varphi) = [l_1(g(\varphi))]^{-1} - [D(\varphi)]^\top [\tilde{l}_1(\varphi)]^{-1}D(\varphi). \)
By the CLT, \(n^{-1/2}[l_1(\theta)]^{-1/2}s_n(\theta) \rightarrow_d Z \), where \(Z = N_k(0, I_k) \). Then, it follows from Theorem 1.10(iii) that, under \(H_0 \),

\[
-2 \log \lambda_n \rightarrow_d Z^\tau[l_1(g(\vartheta))]^{1/2}B(\vartheta)[l_1(g(\vartheta))]^{1/2}Z.
\]

Let \(D = D(\vartheta), B = B(\vartheta), A = l_1(g(\vartheta)), \) and \(C = \tilde{l}_1(\vartheta) \). Then

\[
(A^{1/2}BA^{1/2})^2 = A^{1/2}BABA^{1/2}
\]

\[
= A^{1/2}(A^{-1} - D^\tau C^{-1}D)A(A^{-1} - D^\tau C^{-1}D)A^{1/2}
\]

\[
= (I_k - A^{1/2}D^\tau C^{-1}DA^{1/2})(I_k - A^{1/2}D^\tau C^{-1}DA^{1/2})
\]

\[
= I_k - 2A^{1/2}D^\tau C^{-1}DA^{1/2} + A^{1/2}D^\tau C^{-1}DAD^\tau C^{-1}DA^{1/2}
\]

\[
= I_k - A^{1/2}D^\tau C^{-1}DA^{1/2}
\]

\[
= A^{1/2}BA^{1/2},
\]

where the fourth equality follows from the fact that \(C = DAD^\tau \). This shows that \(A^{1/2}BA^{1/2} \) is a projection matrix.
The rank of $A^{1/2}BA^{1/2}$ is
\[
\text{tr}(A^{1/2}BA^{1/2}) = \text{tr}(I_k - D^\tau C^{-1}DA) \\
= k - \text{tr}(C^{-1}DAD^\tau) \\
= k - \text{tr}(C^{-1}C) \\
= k - (k - r) = r.
\]

Thus, by Exercise 51 in §1.6,
\[
Z^\tau[l_1(g(\vartheta))]^{1/2}B(\vartheta)[l_1(g(\vartheta))]^{1/2}Z = \chi_r^2.
\]

Asymptotic tests

Tests whose rejection regions are constructed using asymptotic theory (so that these tests have asymptotic significance level α) are called *asymptotic tests*, which are useful when a test of exact size α is difficult to find.

The LR test in Theorem 6.5 is one example of an asymptotic test.
Wald test and Score test

The hypothesis $H_0 : \theta = g(\vartheta)$ is equivalent to a set of $r \leq k$ equations:

$$H_0 : R(\theta) = 0,$$

where $R(\theta)$ is a continuously differentiable function from \mathbb{R}^k to \mathbb{R}^r.

Wald (1943) introduced a test that rejects H_0 when the value of

$$W_n = [R(\hat{\theta})]^\tau \{[C(\hat{\theta})]^\tau [I_n(\hat{\theta})]^{-1} C(\hat{\theta})\}^{-1} R(\hat{\theta})$$

is large, where $C(\theta) = \partial R(\theta)/\partial \theta$, $I_n(\theta)$ is the Fisher information matrix based on $X_1, ..., X_n$, and $\hat{\theta}$ is an MLE or RLE of θ.

For testing $H_0 : \theta = \theta_0$ with a known θ_0, $R(\theta) = \theta - \theta_0$ and

$$W_n = (\hat{\theta} - \theta_0)^\tau I_n(\hat{\theta})(\hat{\theta} - \theta_0).$$

Rao (1947) introduced a score test that rejects H_0 when the value of

$$R_n = [s_n(\tilde{\theta})]^\tau [I_n(\tilde{\theta})]^{-1} s_n(\tilde{\theta})$$

is large, where $s_n(\theta) = \partial \log \ell(\theta)/\partial \theta$ is the score function and $\tilde{\theta}$ is an MLE or RLE of θ under $H_0 : R(\theta) = 0$.
Theorem 6.6
Assume the conditions in Theorem 4.16.
(i) Under \(H_0 : R(\theta) = 0 \), where \(R(\theta) \) is a continuously differentiable function from \(\mathcal{R}^k \) to \(\mathcal{R}^r \), \(W_n \xrightarrow{d} \chi^2_r \) and, therefore, the test rejects \(H_0 \) if and only if \(W_n > \chi^2_{r,\alpha} \) has asymptotic significance level \(\alpha \), where \(\chi^2_{r,\alpha} \) is the \((1 - \alpha)\)th quantile of the chi-square distribution \(\chi^2_r \).
(ii) The result in (i) still holds if \(W_n \) is replaced by \(R_n \).

Remarks

▶ Wald’s test, Rao’s score test, and the LR test are asymptotically equivalent.
▶ Wald’s test requires computing \(\hat{\theta} \), not \(\tilde{\theta} = g(\hat{\theta}) \).
▶ Rao’s score test requires computing \(\tilde{\theta} \), not \(\hat{\theta} \).
▶ The LR test requires computing both \(\hat{\theta} \) and \(\tilde{\theta} \) (or solving two maximization problems), but it may be more efficient.
▶ Hence, one may choose one of these tests in terms of computation and efficiency in a particular application.
Proof

(i) Using Theorems 1.12 and 4.17,

\[\sqrt{n}[R(\hat{\theta}) - R(\theta)] \rightarrow_d N_r \left(0, [C(\theta)]^\tau [I_1(\theta)]^{-1} C(\theta)\right) , \]

where \(I_1(\theta) \) is the Fisher information about \(\theta \) contained in \(X_1 \).

Under \(H_0 \), \(R(\theta) = 0 \) and, therefore (by Theorem 1.10),

\[n[R(\hat{\theta})]^\tau \{[C(\theta)]^\tau [I_1(\theta)]^{-1} C(\theta)\}^{-1} R(\hat{\theta}) \rightarrow_d \chi^2_r \]

Then the result follows from Slutsky’s theorem (Theorem 1.11) and the fact that \(\hat{\theta} \rightarrow_p \theta \) and \(I_1(\theta) \) and \(C(\theta) \) are continuous at \(\theta \).

(ii) From the Lagrange multiplier, \(\tilde{\theta} \) satisfies

\[s_n(\tilde{\theta}) + C(\tilde{\theta})\lambda_n = 0 \quad \text{and} \quad R(\tilde{\theta}) = 0. \]

Using Taylor’s expansion, one can show (exercise) that under \(H_0 \),

\[[C(\tilde{\theta})]^\tau (\tilde{\theta} - \theta) = o_p(n^{-1/2}) \quad (1) \]

and

\[s_n(\theta) - I_n(\theta)(\tilde{\theta} - \theta) + C(\tilde{\theta})\lambda_n = O_p(1), \quad (2) \]

where \(I_n(\theta) = nI_1(\theta) \).
Multiplying \([C(\tilde{\theta})]^{\tau}[I_n(\theta)]^{-1}\) to the left-hand side of (2) and using (1), we obtain that

\[
[C(\tilde{\theta})]^{\tau}[I_n(\theta)]^{-1} C(\tilde{\theta}) \lambda_n = -[C(\tilde{\theta})]^{\tau}[I_n(\theta)]^{-1} s_n(\theta) + o_p(n^{-1/2}),
\]

which implies

\[
\lambda_n^{\tau}[C(\tilde{\theta})]^{\tau}[I_n(\theta)]^{-1} C(\tilde{\theta}) \lambda_n \rightarrow_d \chi^2_r
\]

(exercise).

Then the result follows from (3) and the fact that

\[C(\tilde{\theta}) \lambda_n = -s_n(\tilde{\theta}), \quad I_n(\theta) = nI_1(\theta),\]

and \(I_1(\theta)\) is continuous at \(\theta\).
Testing in multinomial distributions

Consider \(n \) independent trials with \(k \) possible outcomes for each trial. Let \(p_j > 0 \) be the probability that the \(j \)th outcome occurs in a given trial and \(X_j \) be the number of occurrences of the \(j \)th outcome in \(n \) trials. Then \(X = (X_1, ..., X_k) \) has the multinomial distribution (Example 2.7) with the parameter \(p = (p_1, ..., p_k) \).

Let \(\xi_i = (0, ..., 0, 1, 0, ..., 0) \), where the single nonzero component 1 is located in the \(j \)th position if the \(i \)th trial yields the \(j \)th outcome. Then \(\xi_1, ..., \xi_n \) are i.i.d. and \(X/n = \bar{\xi} = \sum_{i=1}^{n} \xi_i/n \).

\(X/n \) is an unbiased estimator of \(p \) and, by the CLT,

\[
Z_n(p) = \sqrt{n} \left(\frac{X}{n} - p \right) = \sqrt{n}(\bar{\xi} - p) \rightarrow_d N_k(0, \Sigma),
\]

where \(\Sigma = \text{Var}(X/\sqrt{n}) \) is a symmetric \(k \times k \) matrix whose \(i \)th diagonal element is \(p_i(1 - p_i) \) and \((i, j)\)th off-diagonal element is \(-p_ip_j\).

We first consider the problem of testing

\[
H_0 : p = p_0 \quad \text{versus} \quad H_1 : p \neq p_0,
\]

where \(p_0 = (p_{01}, ..., p_{0k}) \) is a known vector of cell probabilities.
\(\chi^2 \) tests

For testing \(H : \mathbf{p} = \mathbf{p}_0 \) vs \(H_1 : \mathbf{p} \neq \mathbf{p}_0 \), a class of tests related to the asymptotic tests described in §6.4.2 is the class of \(\chi^2 \)-tests. A popular test is based on the following \(\chi^2 \)-statistic:

\[
\chi^2 = \sum_{j=1}^{k} \frac{(X_j - np_{0j})^2}{np_{0j}} = \| D(\mathbf{p}_0) Z_n(\mathbf{p}_0) \|^2,
\]

where \(D(c) \) with \(c = (c_1, \ldots, c_k) \) is the \(k \times k \) diagonal matrix whose \(j \)th diagonal element is \(c_j^{-1/2} \).

Another one is based on the following modified \(\chi^2 \)-statistic:

\[
\tilde{\chi}^2 = \sum_{j=1}^{k} \frac{(X_j - np_{0j})^2}{X_j} = \| D(X/n) Z_n(\mathbf{p}_0) \|^2.
\]

The next result shows that a test of asymptotic significance level \(\alpha \) rejects \(H_0 : \mathbf{p} = \mathbf{p}_0 \) when \(\chi^2 > \chi_{k-1,\alpha}^2 \) (or \(\tilde{\chi}^2 > \chi_{k-1,\alpha}^2 \)), where \(\chi_{k-1,\alpha}^2 \) is the \((1 - \alpha) \)th quantile of \(\chi_{k-1}^2 \).

Thus, these tests are called (asymptotic) \(\chi^2 \)-tests.
Theorem 6.8

Let \(\phi = (\sqrt{p_1}, \ldots, \sqrt{p_k}) \) and \(\Lambda \) be a \(k \times k \) projection matrix.

(i) If \(\Lambda \phi = a \phi \), then

\[
[Z_n(p)]^T D(p) \Lambda D(p) Z_n(p) \to_d \chi_r^2,
\]

where \(\chi_r^2 \) has the chi-square distribution \(\chi_r^2 \) with \(r = \text{tr}(\Lambda) - a \).

(ii) The same result holds if \(D(p) \) in (i) is replaced by \(D(X/n) \).

Remark

The \(\chi^2 \)-statistic and the modified \(\chi^2 \)-statistic are special cases of the statistics in Theorem 6.8(i) and (ii), respectively, with \(\Lambda = I_k \) satisfying \(\Lambda \phi = \phi \).

Proof

The result in (ii) follows from the result in (i) and \(X/n \to_p p \).

To prove (i), let \(D = D(p) \), \(Z_n = Z_n(p) \), and \(Z = N_k(0, I_k) \). From the asymptotic normality of \(Z_n \) and Theorem 1.10,

\[
Z_n^T D \Lambda D Z_n \to_d Z^T A Z \text{ \quad with \quad } A = \Sigma^{1/2} D \Lambda D \Sigma^{1/2}.
\]
From Exercise 51 in §1.6, the result in (i) follows if we can show that $A^2 = A$ (i.e., A is a projection matrix) and $\text{tr}(A) = \text{tr}(\Lambda) - a$. Since Λ is a projection matrix and $\Lambda \phi = a \phi$, a must be either 0 or 1. Note that $D \Sigma D = I_k - \phi \phi^T$.

Then

$$A^3 = \Sigma^{1/2} D \Lambda D \Sigma D \Lambda D \Sigma D \Lambda D \Sigma^{1/2}$$

$$= \Sigma^{1/2} D (\Lambda - a \phi \phi^T)(\Lambda - a \phi \phi^T) \Lambda D \Sigma^{1/2}$$

$$= \Sigma^{1/2} D (\Lambda - 2a \phi \phi^T + a^2 \phi \phi^T) \Lambda D \Sigma^{1/2}$$

$$= \Sigma^{1/2} D (\Lambda - a \phi \phi^T) \Lambda D \Sigma^{1/2}$$

$$= \Sigma^{1/2} D \Lambda D \Sigma D \Lambda D \Sigma^{1/2} = A^2,$$

which implies that the eigenvalues of A must be 0 or 1. Therefore, $A^2 = A$. Also,

$$\text{tr}(A) = \text{tr}[\Lambda(D \Sigma D)] = \text{tr}(\Lambda - a \phi \phi^T) = \text{tr}(\Lambda) - a.$$
Goodness of fit tests

Let $Y_1, ..., Y_n$ be i.i.d. from F. Consider the problem of testing

$$H_0 : F = F_0 \quad \text{versus} \quad H_1 : F \neq F_0,$$

where F_0 is a known c.d.f. (For instance, $F_0 = N(0, 1)$.)

One way to test $H_0 : F = F_0$ is to partition the range of Y_1 into k disjoint events $A_1, ..., A_k$ and test $H_0 : p = p_0$ with $p_j = P_F(A_j)$ and $p_{0j} = P_{F_0}(A_j)$, $j = 1, ..., k$.

Let X_j be the number of Y_i's in A_j, $j = 1, ..., k$.

Based on X_j's, the χ^2-tests discussed previously can be applied. They are called goodness of fit tests.

In the goodness of fit tests above, F_0 in H_0 is known so that p_{0j}'s can be computed.

In some cases, we need to test the following hypotheses:

$$H_0 : F = F_\theta \quad \text{versus} \quad H_1 : F \neq F_\theta,$$

where θ is an unknown parameter in $\Theta \subset \mathbb{R}^s$.

For example, $F_\theta = N(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2)$.
If we still try to test $H_0 : \mathbf{p} = \mathbf{p}_0$ with $p_j = P_{F_\theta}(A_j), \ j = 1, \ldots, k$, the result discussed above is not applicable since \mathbf{p} is unknown under H_0. A generalized χ^2-test can be obtained using the following result. Let $\mathbf{p}(\theta) = (p_1(\theta), \ldots, p_k(\theta))$ be a k-vector of known functions of $\theta \in \Theta \subset \mathbb{R}^s$, where $s < k$. Consider the testing problem

$$H_0 : \mathbf{p} = \mathbf{p}(\theta) \quad \text{versus} \quad H_1 : \mathbf{p} \neq \mathbf{p}(\theta).$$

Note that $H_0 : \mathbf{p} = \mathbf{p}_0$ is the special case of $H_0 : \mathbf{p} = \mathbf{p}(\theta)$ with $s = 0$. Let $\hat{\theta}$ be an MLE of θ under H_0.

By Theorem 6.5, the LR test that rejects H_0 when $-2 \log \lambda_n > \chi^2_{k-s-1,\alpha}$ has asymptotic significance level α, where $\chi^2_{k-s-1,\alpha}$ is the $(1-\alpha)$th quantile of χ^2_{k-s-1} and

$$\lambda_n = \prod_{j=1}^{k} [p_j(\hat{\theta})]^{X_j} / (X_j/n)^{X_j}.$$

Using the fact that $p_j(\hat{\theta})/(X_j/n) \to_p 1$ under H_0 and

$$\log(1 + x) = x - x^2/2 + o(|x|^2) \quad \text{as} \ |x| \to 0,$$
we obtain that
\[-2 \log \lambda_n = -2 \sum_{j=1}^{k} X_j \log \left(1 + \frac{p_j(\hat{\theta})}{X_j/n} - 1\right)\]

\[= -2 \sum_{j=1}^{k} X_j \left(\frac{p_j(\hat{\theta})}{X_j/n} - 1\right) + \sum_{j=1}^{k} X_j \left(\frac{p_j(\hat{\theta})}{X_j/n} - 1\right)^2 + o_p(1)\]

\[= \sum_{j=1}^{k} \frac{[X_j - np_j(\hat{\theta})]^2}{X_j} + o_p(1) = \sum_{j=1}^{k} \frac{[X_j - np_j(\hat{\theta})]^2}{np_j(\hat{\theta})} + o_p(1),\]

where the third equality follows from
\[\sum_{j=1}^{k} p_j(\hat{\theta}) = \sum_{j=1}^{k} X_j/n = 1.\]

Generalized \(\chi^2\)-statistics

The generalized \(\chi^2\)-statistics \(\chi^2\) and \(\tilde{\chi}^2\) are defined to be the previously defined \(\chi^2\)-statistics with \(p_{0j}'s\) replaced by \(p_j(\hat{\theta})'s\).
Theorem 6.9
Under $H_0 : p = p(\theta)$, the generalized χ^2-statistics converge in distribution to χ^2_{k-s-1}.
The χ^2-test with rejection region $\chi^2 > \chi^2_{k-s-1,\alpha}$ (or $\tilde{\chi}^2 > \chi^2_{k-s-1,\alpha}$) has asymptotic significance level α, where $\chi^2_{k-s-1,\alpha}$ is the $(1 - \alpha)$th quantile of χ^2_{k-s-1}.

Discussion
Theorem 6.9 can be applied to derive a goodness of fit test for $H_0 : p = p(\theta)$ vs $H_1 : p \neq p(\theta)$.
However, one has to compute an MLE of θ under $H_0 : p = p(\theta)$, which is different from an MLE under $H_0 : F = F_\theta$ unless $F = F_\theta$ and $p = p(\theta)$ are the same; see Moore and Spruill (1975).
Many elementary textbooks, however, use an MLE under $H_0 : F = F_\theta$, which is wrong.
MLE under $p = p(\theta)$

From the multinomial distribution, the MLE $\hat{\theta}$ in the generalized χ^2 test should maximize the likelihood

$$\ell(\theta) = \frac{n!}{x_1! \cdots x_k!} [p_1(\theta)]^{x_1} \cdots [p_k(\theta)]^{x_k} l_{x_1+\cdots+x_k=1}$$

This MLE $\hat{\theta}$ is different from the MLE maximizing the likelihood based on the family $\{F_\theta\}$

For testing $H_0: F = N(\mu, \sigma^2)$, for example,

$$p_j(\theta) = \Phi \left(\frac{a_j + 1 - \mu}{\sigma} \right) - \Phi \left(\frac{a_j - \mu}{\sigma} \right), \quad j = 1, \ldots, k$$

where $-\infty = a_1 < a_2 < \cdots < a_k < a_{k+1} = \infty$ and a_j's are fixed constants.

This MLE $\hat{\theta} = (\hat{\mu}, \hat{\sigma}^2)$ is certainly different from $\hat{\mu} =$ the sample mean and $\hat{\sigma}^2 = (n - 1)/n$ times the sample variance, which is the MLE under the normal model $N(\mu, \sigma^2)$.