Chapter 4: Genetic Identity Coefficients

§4.1. Kinship and inbreeding coefficients

- **Definition**

 Identity by state (ibs): Two alleles are ibs if they are functionally the same.

 Identity by descent (ibd): Two alleles are ibd if one is a physical copy of the other, or if they are both physical copies of the same ancestral allele.

 Kinship coefficient Φ_{ij}: The kinship coefficient Φ_{ij} between two individuals i and j is the probability that an allele selected randomly from i and an allele selected randomly from the same autosomal locus of j are ibd.
Inbreeding coefficient \(f_i \): The inbreeding coefficient \(f_i \) of an individual \(i \) is the probability that his two alleles at any autosomal locus are ibd. If \(f_i > 0 \), \(i \) is said to be **inbred**.

Relation between kinship and inbreeding coefficients:

\[
\Phi_{ii} = \frac{1}{2}(1 + f_i), \quad f_i = \Phi_{kl},
\]

where \(k \) and \(l \) are parents of \(i \).

- **Calculation of kinship coefficients**

 - **Simple examples**

 Parent-offspring. \(\Phi_{ij} = 1/4 \).

 Full sibs. \(1, 2: \) parents of \(3, 4 \).

 \[
 \Phi_{34} = \frac{1}{2}\Phi_{31} + \frac{1}{2}\Phi_{32} = \frac{1}{4}.
 \]
Half sibs. 4: Child of 1 and 2; 5: Child of 2 and 3.

\[
\Phi_{45} = \frac{1}{2} \Phi_{42} + \frac{1}{2} \Phi_{43}
\]

\[
= \frac{1}{2} \times \frac{1}{4} + 0 = \frac{1}{8}.
\]

First cousins. 3,4: children of 1 and 2; 7: child of 3 and 5; 8: child of 4 and 6.

\[
\Phi_{78} = \frac{1}{2} \Phi_{74} + \frac{1}{2} \Phi_{76}
\]

\[
= \frac{1}{2} \Phi_{74} + 0
\]

\[
= \frac{1}{2} \left(\frac{1}{2} \Phi_{34} + \frac{1}{2} \Phi_{54} \right)
\]

\[
= \frac{1}{2} \left(\frac{1}{2} \Phi_{34} + 0 \right)
\]

\[
= \frac{1}{2} \times \frac{1}{4} = \frac{1}{16}.
\]
○ General algorithm

i) Any person should have either both or neither of his or her parents in the pedigree.

ii) Members in the pedigree are numbered in such a way that every parent precedes his or her children.

iii) The kinship coefficients between any two persons in the pedigree are computed in a symmetric matrix from left top downwards recursively.

Recursive calculation formulas:

a) For Φ_{ii}: if i is a founder, $\Phi_{ii} = 1/2$, otherwise, $\Phi_{ii} = \frac{1}{2} + \frac{1}{2} \Phi_{kl}$, where k and l are parents of i.

b) For Φ_{ij}, $(i > j)$: if i is a founder, $\Phi_{ij} = 0$, otherwise, $\Phi_{ij} = \frac{1}{2} \Phi_{jk} + \frac{1}{2} \Phi_{jl}$, where k and l are parents of i.

Basic Rule: Substitution of parental alleles for the allele of the child.
A Brother-sister mating example

\[\Phi = \begin{pmatrix}
\frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} & \frac{3}{8}
\end{pmatrix} \]
A remark on the substitution rule

The substitution of parental alleles in the calculation of the kinship coefficient between two persons should always operate on the higher numbered person.

A counterexample:

\[\Phi_{35} = \frac{1}{2} \Phi_{33} + \frac{1}{2} \Phi_{34}, \]

\[\Phi_{35} \neq \frac{1}{2} \Phi_{15} + \frac{1}{2} \Phi_{25}. \]

Note: If replace the allele of 3 with its parents’ alleles, then sampling from 3 and sampling from 5 are not independent. Sampling from 5 depends on what have been sampled for 3.
§4.2. Identity states and identity coefficients

- Detailed identity states
• Condensed identity states

\[S_1 = S_1^*, \quad S_2 = S_6^*, \quad S_3 = S_2^* \cup S_3^* \]
\[S_4 = S_7^*, \quad S_5 = S_4^* \cup S_5^* \]
\[S_6 = S_8^*, \quad S_7 = S_9^* \cup S_{12}^* \]
\[S_8 = S_{10}^* \cup S_{11}^* \cup S_{13}^* \cup S_{14}^* \]
\[S_9 = S_9^* \]