Exchange limit and integration

Theorem 1.1
Let \(f_1, f_2, \ldots \) be a sequence of Borel functions on \((\Omega, \mathcal{F}, \nu)\).

(i) (Fatou’s lemma). If \(f_n \geq 0 \), then
\[
\int \lim \inf_n f_n \, d\nu \leq \lim \inf_n \int f_n \, d\nu.
\]

(ii) (Dominated convergence theorem). If \(\lim_{n \to \infty} f_n = f \) a.e. and there exists an integrable function \(g \) such that \(|f_n| \leq g \) a.e., then
\[
\int \lim_{n \to \infty} f_n \, d\nu = \lim_{n \to \infty} \int f_n \, d\nu.
\]

(iii) (Monotone convergence theorem). If \(0 \leq f_1 \leq f_2 \leq \cdots \) and \(\lim_{n \to \infty} f_n = f \) a.e., then
\[
\int \lim_{n \to \infty} f_n \, d\nu = \lim_{n \to \infty} \int f_n \, d\nu.
\]
Proof of Theorem 1.1
Part (i) and part (iii) are equivalent.

Proof of Part (ii):
By the condition, \(g + f_n \geq 0 \) and \(g - f_n \geq 0 \)
By Fatou’s lemma and the fact that \(\lim_{n \to \infty} f_n = f \),

\[
\int (g + f) \, d\nu = \int \liminf_n (g + f_n) \, d\nu \leq \liminf_n \int (g + f_n) \, d\nu
\]
\[
\int (g - f) \, d\nu = \int \liminf_n (g - f_n) \, d\nu \leq \liminf_n \int (g - f_n) \, d\nu
\]
The last expression is the same as

\[
\int (f - g) \, d\nu \geq \limsup_n \int (f_n - g) \, d\nu
\]

Since \(g \) is integrable, all integrals are finite and we can cancel
\(\int gd\nu \) in the above inequalities.
Then

\[
\int fd\nu \leq \liminf_n \int f_n \, d\nu \leq \limsup_n \int f_n \, d\nu \leq \int fd\nu
\]
Proof of part (iii):

By Proposition 1.6 (i), \(\int f_n d\nu \) is increasing, hence there exists \(\lim_{n \to \infty} \int f_n d\nu \leq \int f d\nu \). It is left to show \(\lim_{n \to \infty} \int f_n d\nu \geq \int f d\nu \).

Case 1: Suppose there is a simple function \(\phi \) such that \(0 \leq \phi \leq f \) and \(\nu(A_\phi) = \infty \), \(A_\phi = \{\phi > 0\} \).

Let \(a = \min_{\omega \in A_\phi} \phi(\omega) \) and \(b = a - \epsilon > 0 \) for some \(\epsilon > 0 \). Define \(A_n = \{f_n > b\} \). Then \(A_n \) is increasing and \(A_\phi \subset \bigcup A_n \).

\[
\int f_n d\nu \geq \int_{A_n} f_n d\nu \geq b \nu(A_n) \to \nu(\bigcup A_n) \geq \nu(A_\phi) = \infty.
\]

Thus, \(\lim_{n \to \infty} \int f_n d\nu \geq \infty \geq \int f d\nu \).

Case 2: Suppose for any \(0 \leq \phi \leq f \), \(\nu(A_\phi) < \infty \).

Claim: There is a \(B \subset A_\phi \) with \(\nu(B) < \epsilon \) such that \(f_n \to f \) uniformly on \(A_\phi \cap B^c \).
If the claim is true then

\[
\int f_n \, d\nu \geq \int_{A_\phi \cap B^c} f_n \, d\nu \rightarrow \int_{A_\phi \cap B^c} f \, d\nu = \int_{A_\phi \cap B^c} \phi \, d\nu
\]

\[
= \int \phi \, d\nu - \int_B \phi \, d\nu \geq \int \phi \, d\nu - \epsilon \max_{\omega \in A_\phi} \phi(\omega).
\]

Since both \(\epsilon\) and \(\phi\) are arbitrary, \(\lim_{n \to \infty} \int f_n \, d\nu \geq \int f \, d\nu\).

Proof of the claim: Let \(\delta_k\) be a sequence of positive numbers converging to zero. Let \(B_{nk} = \cap_{m \geq n} \{\omega : |f_m(\omega) - f(\omega)| < \delta_k\}\). Then \(\cup_n B_{nk} = A_\phi\) and \(\nu(B_{nk}) \to \nu(\cup_n B_{nk}) = \nu(A_\phi)\). There is \(n_k\) large enough such that \(\nu(B_{nk}) > \nu(A_\phi) - \epsilon/2^{k+1}\). Let \(B^c = \cap_{k=1}^\infty B_{nk,k}\). Then \(f_n \to f\) uniformly on \(B^c\). On the other hand, \(\nu(B) = \nu(\cup_{k=1}^\infty B^c_{nk,k}) \leq \sum_{k=1}^\infty \nu(B^c_{nk,k}) \leq \epsilon\).

All the sets and their complements are taken within \(A_\phi\).
Change of variables

Theorem 1.2
Let f be measurable from $(\Omega, \mathcal{F}, \nu)$ to (Λ, \mathcal{G}) and g be Borel on (Λ, \mathcal{G}). Then

$$\int_{\Omega} g \circ f d\nu = \int_{\Lambda} gd(\nu \circ f^{-1}),$$

i.e., if either integral exists, then so does the other, and the two are the same.

▶ For a random variable X on (Ω, \mathcal{F}, P),

$$EX = \int_{\Omega} XdP = \int_{\mathbb{R}} xdP_X, \quad P_X = P \circ X^{-1}$$

▶ Notation: If F is the c.d.f. of P_X,

$$\int_{\Omega} f \circ XdP = \int f(x)dP_X = \int f(x)dF(x) = \int fdF.$$
Fubini’s theorem (Theorem 1.3)

Let ν_i be a σ-finite measure on $(\Omega_i, \mathcal{F}_i)$, $i = 1, 2$, and let f be a Borel function on $\prod_{i=1}^2(\Omega_i, \mathcal{F}_i)$. Suppose that either $f \geq 0$ or $\int |f| \nu_1 \times \nu_2 < \infty$. Then

$$g(\omega_2) = \int_{\Omega_1} f(\omega_1, \omega_2) d\nu_1$$

exists a.e. ν_2 and defines a Borel function on Ω_2 whose integral w.r.t. ν_2 exists, and

$$\int_{\Omega_1 \times \Omega_2} f(\omega_1, \omega_2) d\nu_1 \times \nu_2 = \int_{\Omega_2} \left[\int_{\Omega_1} f(\omega_1, \omega_2) d\nu_1 \right] d\nu_2.$$

Fubini’s theorem is very useful in

1. evaluating multi-dimensional integrals (exchanging the order of integrals);
2. proving a function is measurable;
3. proving some results by relating a one dimensional integral to a multi-dimensional integral.
Example 1.9
Let $\Omega_1 = \Omega_2 = \{0, 1, 2, \ldots\}$, and $\nu_1 = \nu_2$ be the counting measure. A function f on $\Omega_1 \times \Omega_2$ defines a double sequence. If either $f \geq 0$ or $\int |f| \, d\nu_1 \times \nu_2 < \infty$, then

$$\int fd\nu_1 \times \nu_2 = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f(i, j) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} f(i, j)$$

(by Theorem 1.3 and Example 1.5). Thus, a double series can be summed in either order, if it is summable or $f \geq 0$.
Example: Exercise 47

Let X and Y be random variables such that the joint c.d.f. of (X, Y) is $F_X(x)F_Y(y)$, where F_X and F_Y are marginal c.d.f.’s.

Let $Z = X + Y$.

We want to show that

$$F_Z(z) = \int F_Y(z - x) dF_X(x).$$

Note that

$$F_Z(z) = \int_{x+y\leq z} dF_X(x) dF_Y(y)$$

$$= \int \left(\int_{y\leq z-x} dF_Y(y) \right) dF_X(x)$$

$$= \int F_Y(z - x) dF_X(x),$$

where the second equality follows from Fubini’s theorem.
Radon-Nikodym derivative

Absolute continuity

Let λ and ν be two measures on a measurable space $(\Omega, \mathcal{F}, \nu)$. We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0 \quad \text{implies} \quad \lambda(A) = 0.$$

Let f be a nonnegative Borel function and

$$\lambda(A) = \int_A f \, d\nu, \quad A \in \mathcal{F}.$$

Then λ is a measure and $\lambda \ll \nu$. Computing $\lambda(A)$ can be done through integration w.r.t. a well-known measure. $\lambda \ll \nu$ is also almost sufficient for the existence of f with $\lambda(A) = \int_A f \, d\nu, \quad A \in \mathcal{F}$.
Theorem 1.4 (Radon-Nikodym theorem)

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ-finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \quad A \in \mathcal{F}.$$

Furthermore, f is unique a.e. ν, i.e., if $\lambda(A) = \int_A g \, d\nu$ for any $A \in \mathcal{F}$, then $f = g$ a.e. ν.

Remarks

▶ The function f is called the Radon-Nikodym derivative or density of λ w.r.t. ν and is denoted by $d\lambda/d\nu$.

▶ Consequence: If f is Borel on (Ω, \mathcal{F}) and $\int_A f \, d\nu = 0$ for any $A \in \mathcal{F}$, then $f = 0$ a.e. ν.

Chen Zehua

ST5215: Advanced Statistical Theory
Theorem 1.4 (Radon-Nikodym theorem)

Let \(\nu \) and \(\lambda \) be two measures on \((\Omega, \mathcal{F}) \) and \(\nu \) be \(\sigma \)-finite. If \(\lambda \ll \nu \), then there exists a nonnegative Borel function \(f \) on \(\Omega \) such that

\[
\lambda(A) = \int_A f \, d\nu, \quad A \in \mathcal{F}.
\]

Furthermore, \(f \) is unique a.e. \(\nu \), i.e., if \(\lambda(A) = \int_A g \, d\nu \) for any \(A \in \mathcal{F} \), then \(f = g \) a.e. \(\nu \).

Remarks

- The function \(f \) is called the Radon-Nikodym derivative or density of \(\lambda \) w.r.t. \(\nu \) and is denoted by \(d\lambda/d\nu \).
- Consequence: If \(f \) is Borel on \((\Omega, \mathcal{F}) \) and \(\int_A f \, d\nu = 0 \) for any \(A \in \mathcal{F} \), then \(f = 0 \) a.e.
Probability density function

If $\int f \, d\nu = 1$ for an $f \geq 0$ a.e. ν, then λ is a probability measure and f is called its *probability density function* (p.d.f.) w.r.t. ν. For any probability measure P on $(\mathcal{R}^k, \mathcal{B}^k)$ corresponding to a c.d.f. F or a random vector X, if P has a p.d.f. f w.r.t. a measure ν, then f is also called the p.d.f. of F or X w.r.t. ν.
Probability density function

If $\int f d\nu = 1$ for an $f \geq 0$ a.e. ν, then λ is a probability measure and f is called its *probability density function* (p.d.f.) w.r.t. ν.

For any probability measure P on $(\mathcal{R}^k, \mathcal{B}^k)$ corresponding to a c.d.f. F or a random vector X, if P has a p.d.f. f w.r.t. a measure ν, then f is also called the p.d.f. of F or X w.r.t. ν.

Example 1.10 (Discrete c.d.f. and p.d.f.)

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and let p_n, $n = 1, 2, \ldots$, be a sequence of positive numbers such that $\sum_{n=1}^{\infty} p_n = 1$. Then

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \leq x < a_{n+1}, \ n = 1, 2, \ldots \\ 0 & -\infty < x < a_1. \end{cases}$$

is a stepwise c.d.f. It has a jump of size p_n at each a_n and is flat between a_n and a_{n+1}, $n = 1, 2, \ldots$. Such a c.d.f. is called a *discrete* c.d.f.
Example 1.10 (continued)

The corresponding probability measure is

\[P(A) = \sum_{i : a_i \in A} p_i, \quad A \in \mathcal{F}, \]

where \(\mathcal{F} = \) the set of all subsets (power set).

Let \(\nu \) be the counting measure on the power set.

Then

\[P(A) = \int_A f d\nu = \sum_{a_i \in A} f(a_i), \quad A \subset \Omega, \]

where \(f(a_i) = p_i, \quad i = 1, 2, \ldots \).

That is, \(f \) is the p.d.f. of \(P \) or \(F \) w.r.t. \(\nu \).

Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure.

A p.d.f. w.r.t. counting measure is called a \textit{discrete} p.d.f.

A discrete p.d.f. \(f \) corresponds to a discrete c.d.f. \(F \) and the value \(f(x) \) is the jump size of \(F \) at \(x \in \mathcal{R} \).
Example 1.11

Let F be a c.d.f. Assume that F is differentiable in the usual sense in calculus. Let f be the derivative of F. From calculus,

$$F(x) = \int_{-\infty}^{x} f(y) dy, \quad x \in \mathcal{R}.$$

Let P be the probability measure corresponding to F. Then

$$P(A) = \int_{A} f dm \quad \text{for any } A \in \mathcal{B},$$

(1)

where m is the Lebesgue measure on \mathcal{R}.

f is the p.d.f. of P or F w.r.t. Lebesgue measure. Radon-Nikodym derivative is the same as the usual derivative in calculus.
Remarks

- A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
- Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).
- Some c.d.f. does not have Lebesgue p.d.f.
Remarks

- A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
- Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).
- Some c.d.f. does not have Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives)

Let ν be a σ-finite measure on a measure space (Ω, \mathcal{F}). All other measures discussed in (i)-(iii) are defined on (Ω, \mathcal{F}).

(i) If λ is a measure, $\lambda \ll \nu$, and $f \geq 0$, then

$$
\int f d\lambda = \int f \frac{d\lambda}{d\nu} d\nu.
$$

(Notice how the $d\nu$'s “cancel” on the right-hand side.)

(ii) If λ_i, $i = 1, 2$, are measures and $\lambda_i \ll \nu$, then $\lambda_1 + \lambda_2 \ll \nu$ and

$$
\frac{d(\lambda_1 + \lambda_2)}{d\nu} = \frac{d\lambda_1}{d\nu} + \frac{d\lambda_2}{d\nu} \quad \text{a.e. } \nu.
$$
Proposition 1.7 (continued)

(iii) (Chain rule). If τ is a measure, λ is a σ-finite measure, and $\tau \ll \lambda \ll \nu$, then

$$
\frac{d\tau}{d\nu} = \frac{d\tau}{d\lambda} \frac{d\lambda}{d\nu} \quad \text{a.e. } \nu.
$$

In particular, if $\lambda \ll \nu$ and $\nu \ll \lambda$ (in which case λ and ν are equivalent), then

$$
\frac{d\lambda}{d\nu} = \left(\frac{d\nu}{d\lambda} \right)^{-1} \quad \text{a.e. } \nu \text{ or } \lambda.
$$

(iv) Let $(\Omega_i, \mathcal{F}_i, \nu_i)$ be a measure space and ν_i be σ-finite, $i = 1, 2$. Let λ_i be a σ-finite measure on $(\Omega_i, \mathcal{F}_i)$ and $\lambda_i \ll \nu_i$, $i = 1, 2$. Then $\lambda_1 \times \lambda_2 \ll \nu_1 \times \nu_2$ and

$$
\frac{d(\lambda_1 \times \lambda_2)}{d(\nu_1 \times \nu_2)}(\omega_1, \omega_2) = \frac{d\lambda_1}{d\nu_1}(\omega_1) \frac{d\lambda_2}{d\nu_2}(\omega_2) \quad \text{a.e. } \nu_1 \times \nu_2.
$$