Examples of Sufficient Statistics

Sufficient statistics in exponential families

If \(\mathcal{P} \) is an exponential family, then Theorem 2.2 can be applied with

\[
g_\theta(t) = \exp\{[\eta(\theta)]^\top t - \xi(\theta)\},
\]

i.e., \(T \) is a sufficient statistic for \(\theta \in \Theta \).

In Example 2.10 the joint distribution of \(X \) is in an exponential family with \(T(X) = \sum_{i=1}^n X_i \).

Hence, we can conclude that \(T \) is sufficient for \(\theta \in (0, 1) \) without computing the conditional distribution of \(X \) given \(T \).
Example 2.11 (Truncation families)

Let $\phi(x)$ be a positive Borel function on $(\mathcal{R}, \mathcal{B})$ such that $\int_a^b \phi(x)\,dx < \infty$ for any a and b, $-\infty < a < b < \infty$.

Let $\theta = (a, b)$, $\Theta = \{(a, b) \in \mathcal{R}^2 : a < b\}$, and

$$f_\theta(x) = c(\theta)\phi(x)I_{(a,b)}(x), \quad c(\theta) = \left[\int_a^b \phi(x)\,dx\right]^{-1}$$

Then $\{f_\theta : \theta \in \Theta\}$, called a truncation family, is a parametric family dominated by the Lebesgue measure on \mathcal{R}.

Let X_1, \ldots, X_n be i.i.d. random variables having the p.d.f. f_θ.

Then the joint p.d.f. of $X = (X_1, \ldots, X_n)$ is

$$\prod_{i=1}^n f_\theta(x_i) = [c(\theta)]^n I_{(a,\infty)}(x_{(1)})I_{(-\infty,b)}(x_{(n)}) \prod_{i=1}^n \phi(x_i), \quad (1)$$

where $x_{(i)}$ is the ith ordered value of x_1, \ldots, x_n.

Let $T(X) = (X_{(1)}, X_{(n)})$, $g_\theta(t_1, t_2) = [c(\theta)]^n I_{(a,\infty)}(t_1)I_{(-\infty,b)}(t_2)$, and $h(x) = \prod_{i=1}^n \phi(x_i)$.

By (1) and Theorem 2.2, $T(X)$ is sufficient for $\theta \in \Theta$.
Example 2.12 (Order statistics)

Let \(X = (X_1, \ldots, X_n) \) and \(X_1, \ldots, X_n \) be i.i.d. random variables having a distribution \(P \in \mathcal{P} \), where \(\mathcal{P} \) is the family of distributions on \(\mathcal{R} \) having Lebesgue p.d.f.'s.

Let \(X_{(1)}, \ldots, X_{(n)} \) be the order statistics given in Example 2.9.

Note that the joint p.d.f. of \(X \) is

\[
f(x_1) \cdots f(x_n) = f(x_{(1)}) \cdots f(x_{(n)}).
\]

Hence, \(T(X) = (X_{(1)}, \ldots, X_{(n)}) \) is sufficient for \(P \in \mathcal{P} \).

The order statistics can be shown to be sufficient even when \(\mathcal{P} \) is not dominated by any \(\sigma \)-finite measure, but Theorem 2.2 is not applicable.
Minimal Sufficiency

Convention: If a statement holds except for outcomes in an event A satisfying $P(A) = 0$ for all $P \in \mathcal{P}$, then we say that the statement holds a.s. \mathcal{P}.

Definition 2.5 Minimal sufficiency
Let T be a sufficient statistic for $P \in \mathcal{P}$. T is called a minimal sufficient Statistic iff, for any other statistic S sufficient for $P \in \mathcal{P}$, there is a measurable function ψ such that $T = \psi(S)$ a.s. \mathcal{P}

Existence
Minimal sufficient statistics exist under weak assumptions, e.g. \mathcal{P} contains distributions on \mathcal{R}^k dominated by a σ-finite measure (Bahadur, 1957).
Uniqueness of minimal sufficient statistics

If both T and S are minimal sufficient statistics, then by definition there is one-to-one measurable function ψ such that $T = \psi(S)$ a.s. P.

Hence, the minimal sufficient statistic is unique in the sense that two statistics that are one-to-one measurable functions of each other can be treated as one statistic.

Example 2.13

Let X_1, \ldots, X_n be i.i.d. random variables form P_θ, the uniform distribution $U(\theta, \theta + 1)$, $\theta \in \mathbb{R}$, $n > 1$.

The joint Lebesgue p.d.f. of (X_1, \ldots, X_n) is

$$f_\theta(x) = \prod_{i=1}^{n} l_{(\theta, \theta+1)}(x_i) = l_{(x_{(n)}-1, x_{(1)})}(\theta), \quad x = (x_1, \ldots, x_n) \in \mathcal{R}^n,$$

where $x_{(i)}$ denotes the ith smallest value of x_1, \ldots, x_n.

By Theorem 2.2, $T = (X_{(1)}, X_{(n)})$ is sufficient for θ.
Example 2.13 (continued)

We now show that \(T = (X_1, X_n) \) is minimal sufficient. Note that

\[x_1 = \sup \{ \theta : f_\theta(x) > 0 \} \quad \text{and} \quad x_n = 1 + \inf \{ \theta : f_\theta(x) > 0 \}. \]

If \(S(X) \) is a statistic sufficient for \(\theta \), then by Theorem 2.2, there are Borel functions \(h \) and \(g_\theta \) such that \(f_\theta(x) = g_\theta(S(x)) h(x) \). For \(x \) with \(h(x) > 0 \),

\[x_1 = \sup \{ \theta : g_\theta(S(x)) > 0 \} \quad \text{and} \quad x_n = 1 + \inf \{ \theta : g_\theta(S(x)) > 0 \}. \]

Hence, there is a measurable function \(\psi \) such that \(T(x) = \psi(S(x)) \) when \(h(x) > 0 \).

Since \(h > 0 \), a.s. \(P \), we conclude that \(T \) is minimal sufficient.
Theorem 2.3 (usefull tools for checking minimal sufficiency)

Let \mathcal{P} be a family of distributions on \mathbb{R}^k.

(i) Suppose that $\mathcal{P}_0 \subset \mathcal{P}$ and a.s. \mathcal{P}_0 implies a.s. \mathcal{P}. If T is sufficient for $P \in \mathcal{P}$ and minimal sufficient for $P \in \mathcal{P}_0$, then T is minimal sufficient for $P \in \mathcal{P}$.

(ii) Suppose that \mathcal{P} contains p.d.f.'s f_0, f_1, f_2, \ldots, w.r.t. a σ-finite measure. Let $f_\infty(x) = \sum_{i=0}^{\infty} c_i f_i(x)$, where $c_i > 0$ for all i and $\sum_{i=0}^{\infty} c_i = 1$, and let $T_i(x) = f_i(x)/f_\infty(x)$ when $f_\infty(x) > 0$, $i = 0, 1, 2, \ldots$. Then $T(X) = (T_0, T_1, T_2, \ldots)$ is minimal sufficient for $P \in \mathcal{P}$. Furthermore, if
\begin{align*}
\{x : f_i(x) > 0\} \subset \{x : f_0(x) > 0\}
\end{align*}
for all i, then we may replace $f_\infty(x)$ by $f_0(x)$, in which case $T(X) = (T_1, T_2, \ldots)$ is minimal sufficient for $P \in \mathcal{P}$.

Suppose that \mathcal{P} contains p.d.f.'s f_p w.r.t. a σ-finite measure and that there exists a sufficient statistic $T(X)$ such that, for any possible values x and y of X, $f_p(x) = f_p(y)\phi(x, y)$ for all P implies $T(x) = T(y)$, where ϕ is a measurable function. Then $T(X)$ is minimal sufficient for $P \in \mathcal{P}$.

Proof

(i) If S is sufficient for $P \in \mathcal{P}$, then it is also sufficient for $P \in \mathcal{P}_0$ and, therefore, $T = \psi(S)$ a.s. \mathcal{P}_0. The result follows from that a.s. \mathcal{P}_0 implies a.s. \mathcal{P}.

(ii) Note that $f_\infty > 0$ a.s. \mathcal{P}. Let $g_i(T) = T_i$, $i = 0, 1, 2, \ldots$. Then $f_i(x) = g_i(T(x))f_\infty(x)$ a.s. \mathcal{P}. By Theorem 2.2, T is sufficient for $P \in \mathcal{P}$. Suppose $S(X)$ is another sufficient statistic, and $f_i(x) = \tilde{g}_i(S(x))h(x)$, $i = 0, 1, 2, \ldots$. Hence

$$T_i(x) = \frac{\tilde{g}_i(S(x))}{\sum_{j=1}^{\infty} c_j\tilde{g}_j(S(x))}$$

for x's satisfying $f_\infty(x) > 0$. By Definition 2.5, T is minimal sufficient for $P \in \mathcal{P}$. The proof is the same when f_∞ is replaced by f_0.
From Bahadur (1957), there is a minimal sufficient statistic $S(X)$. The result follows if we can show that $T(X) = \psi(S(X))$ a.s. \mathcal{P} for a measurable function ψ.

By Theorem 2.2, there are Borel functions h and g_P such that $f_P(x) = g_P(S(x))h(x)$ for all P. Let $A = \{x : h(x) = 0\}$. Then $P(A) = 0$ for all P. For x and y such that $S(x) = S(y)$, $x \not\in A$ and $y \not\in A$,

$$f_P(x) = g_P(S(x))h(x) = g_P(S(y))h(x) = f_P(y)h(x)/h(y)$$

for all P. Hence $T(x) = T(y)$. This shows that there is a function ψ such that $T(x) = \psi(S(x))$ except for $x \in A$.

It remains to show that ψ is measurable. Since S is minimal sufficient, $g(T(X)) = S(X)$ a.s. \mathcal{P} for a measurable function g. Hence g is one-to-one and $\psi = g^{-1}$. By Theorem 3.9 in Parthasarathy (1967), ψ is measurable.