ST5215: Advanced Statistical Theory (I)

Chen Zehua

Department of Statistics & Applied Probability

Thursday, November 9, 2011
Theorem 3.11 (Consistency)

Consider model
\[X = Z\beta + \epsilon \]
(1)

under assumption A3 (\(E(\epsilon) = 0 \) and \(\text{Var}(\epsilon) \) is an unknown matrix). Consider the LSE \(l^T \hat{\beta} \) with \(l \in \mathcal{R}(Z) \) for every \(n \).

Suppose that \(\sup_n \lambda_+(\text{Var}(\epsilon)) < \infty \), where \(\lambda_+[A] \) is the largest eigenvalue of the matrix \(A \), and that \(\lim_{n \to \infty} \lambda_+[(Z^T Z)^{-}] = 0 \). Then \(l^T \hat{\beta} \) is consistent in mse for any \(l \in \mathcal{R}(Z) \).

Proof

The result follows from the fact that \(l^T \hat{\beta} \) is unbiased and

\[\text{Var}(l^T \hat{\beta}) = l^T (Z^T Z)^{-} Z^T \text{Var}(\epsilon) Z (Z^T Z)^{-} l \leq \lambda_+[\text{Var}(\epsilon)] l^T (Z^T Z)^{-} l. \]
Theorem 3.12
Consider model (1) with assumption A3.
Suppose that \(0 < \inf_n \lambda_- [\text{Var}(\epsilon)] \), where \(\lambda_- [A] \) is the smallest eigenvalue of the matrix \(A \), and that
\[
\lim_{n \to \infty} \max_{1 \leq i \leq n} Z_i^\top (Z^\top Z)^{-1} Z_i = 0. \tag{2}
\]
Suppose further that \(n = \sum_{j=1}^{k} m_j \) for some integers \(k, m_j, j = 1, ..., k \), with \(m_j \)'s bounded by a fixed integer \(m \), \(\epsilon = (\xi_1, ..., \xi_k) \), \(\xi_j \in \mathcal{R}^{m_j} \), and \(\xi_j \)'s are independent.

(i) If \(\sup_i E|\epsilon_i|^{2+\delta} < \infty \), then for any \(l \in \mathcal{R}(Z) \),
\[
\frac{l^\top (\hat{\beta} - \beta)}{\sqrt{\text{Var}(l^\top \hat{\beta})}} \to_d N(0, 1). \tag{3}
\]
(ii) Result (3) holds for any \(l \in \mathcal{R}(Z) \) if, when \(m_i = m_j \), \(1 \leq i < j \leq k \), \(\xi_i \) and \(\xi_j \) have the same distribution.
Proof
For \(l \in \mathcal{R}(Z) \),
\[
\begin{align*}
I^\top (Z^\top Z)^{-1} Z^\top Z \beta - I^\top \beta &= 0
\end{align*}
\]
and
\[
\begin{align*}
I^\top (\hat{\beta} - \beta) &= I^\top (Z^\top Z)^{-1} Z^\top \epsilon = \sum_{j=1}^k c^T_{nj} \xi_j,
\end{align*}
\]
where \(c_{nj} \) is the \(m_j \)-vector whose components are \(I^\top (Z^\top Z)^{-1} Z_i, \)
i = \(k_{j-1} + 1, \ldots, k_j, \) \(k_0 = 0, \) and \(k_j = \sum_{t=1}^j m_t, \) \(j = 1, \ldots, k. \)
Note that
\[
\begin{align*}
\sum_{j=1}^k \|c_{nj}\|^2 &= I^\top (Z^\top Z)^{-1} Z^\top Z(Z^\top Z)^{-1} I = I^\top (Z^\top Z)^{-1} I. \tag{4}
\end{align*}
\]
Also,
\[
\begin{align*}
\max_{1 \leq j \leq k} \|c_{nj}\|^2 &\leq m \max_{1 \leq i \leq n} [I^\top (Z^\top Z)^{-1} Z_i]^2 \\
&\leq ml^\top (Z^\top Z)^{-1} I \max_{1 \leq i \leq n} Z_i^\top (Z^\top Z)^{-1} Z_i,
\end{align*}
\]
Proof (continued)

\[
\lim_{n \to \infty} \left(\max_{1 \leq j \leq k} \frac{\|c_{nj}\|^2}{\sum_{j=1}^{k} \|c_{nj}\|^2} \right) = 0.
\]

The results then follow from Corollary 1.3.

- Under the conditions of Theorem 3.12, \(\text{Var}(\epsilon) \) is a diagonal block matrix with \(\text{Var}(\xi_j) \) as the \(j \)th diagonal block, which includes the case of independent \(\epsilon_i \)'s as a special case.
- Exercise 80 shows that condition (2) is almost a necessary condition for the consistency of the LSE.

Lemma 3.3

The following are sufficient conditions for (2).

(a) \(\lambda_+ [(Z^\top Z)^{-}] \to 0 \) and \(Z_n^\top (Z^\top Z)^{-} Z_n \to 0 \), as \(n \to \infty \).

(b) There is an increasing sequence \(\{a_n\} \) such that \(a_n \to \infty \), \(a_n / a_{n+1} \to 1 \), and \(Z^\top Z / a_n \) converges to a positive definite matrix.
Proof of (a)

Since $Z^\tau Z$ depends on n, we denote $(Z^\tau Z)^-$ by A_n.

Let i_n be the integer such that $h_{i_n} = \max_{1 \leq i \leq n} h_i$.

If $\lim_{n \to \infty} i_n = \infty$, then

$$
\lim_{n \to \infty} h_{i_n} = \lim_{n \to \infty} Z_{i_n}^\tau A_n Z_{i_n} \leq \lim_{n \to \infty} Z_{i_n}^\tau A_{i_n} Z_{i_n} = 0,
$$

where the inequality follows from $i_n \leq n$ and, thus, $A_{i_n} - A_n$ is nonnegative definite.

If $i_n \leq c$ for all n, then

$$
\lim_{n \to \infty} h_{i_n} = \lim_{n \to \infty} Z_{i_n}^\tau A_n Z_{i_n} \leq \lim_{n \to \infty} \lambda_n \max_{1 \leq i \leq c} \|Z_i\|^2 = 0.
$$

Therefore, for any subsequence $\{j_n\} \subset \{i_n\}$ with $\lim_{n \to \infty} j_n = a \in (0, \infty]$, $\lim_{n \to \infty} h_{j_n} = 0$.

This shows that $\lim_{n \to \infty} h_{i_n} = 0$.
Example: simple linear model

In Example 3.12,

\[X_i = \beta_0 + \beta_1 t_i + \epsilon_i, \quad i = 1, \ldots, n. \]

If \(n^{-1} \sum_{i=1}^{n} t_i^2 \rightarrow c \) and \(n^{-1} \sum_{i=1}^{n} t_i \rightarrow d \) where \(c \) is positive and \(c > d^2 \), then condition (b) in Lemma 3.3 is satisfied with \(a_n = n \) and, therefore, Theorem 3.12 applies.

Example: one-way ANOVA

In the one-way ANOVA model (Example 3.13),

\[X_i = \mu_j + \epsilon_i, \quad i = k_j - 1 + 1, \ldots, k_j, \quad j = 1, \ldots, m, \]

where \(k_0 = 0, \quad k_j = \sum_{l=1}^{j} n_l, \quad j = 1, \ldots, m, \) and \((\mu_1, \ldots, \mu_m) = \beta, \)

\[\max_{1 \leq i \leq n} Z_i^T (Z^T Z)^{-1} Z_i = \lambda_+ [(Z^T Z)^{-1}] = \max_{1 \leq j \leq m} n_j^{-1}. \]

Conditions related to \(Z \) in Theorem 3.12 are satisfied iff

\[\min_j n_j \rightarrow \infty. \]
The weighted LSE

In the linear model $X = Z\beta + \epsilon$, the unbiased LSE of $l^\tau \beta$ may be improved by a slightly biased estimator when $V = \text{Var}(\epsilon)$ is not $\sigma^2 I_n$ and the LSE is not BLUE.

Assume that Z is of full rank so that every $l^\tau \beta$ is estimable. If V is known, then the BLUE of $l^\tau \beta$ is $l^\tau \tilde{\beta}$, where

$$\tilde{\beta} = (Z^\tau V^{-1} Z)^{-1} Z^\tau V^{-1} X$$ \hspace{1cm} (5)

If V is unknown and \hat{V} is an estimator of V, then an application of the substitution principle leads to a *weighted least squares estimator*

$$\hat{\beta}_w = (Z^\tau \hat{V}^{-1} Z)^{-1} Z^\tau \hat{V}^{-1} X.$$ \hspace{1cm} (6)

The weighted LSE is not linear in X and not necessarily unbiased for β. If the distribution of ϵ is symmetric about 0 and \hat{V} remains unchanged when ϵ changes to $-\epsilon$, then the distribution of $\hat{\beta}_w - \beta$ is symmetric about 0 and, if $E\hat{\beta}_w$ is well defined, $\hat{\beta}_w$ is unbiased for β.
If the weighted LSE $l^T \hat{\beta}_w$ is unbiased, then the LSE $l^T \hat{\beta}$ may not be a BLUE, since $\text{Var}(l^T \hat{\beta}_w)$ may be smaller than $\text{Var}(l^T \hat{\beta})$.

Asymptotic properties of the weighted LSE depend on the asymptotic behavior of \hat{V}. We say that \hat{V} is consistent for V iff

$$\| \hat{V}^{-1} V - I_n \|_{\text{max}} \rightarrow_p 0,$$

(7)

where $\| A \|_{\text{max}} = \max_{i,j} |a_{ij}|$ for a matrix A whose (i,j)th element is a_{ij}.

Theorem 3.17

Consider model (1) with a full rank Z. Let $\tilde{\beta}$ and $\hat{\beta}_w$ be defined by (5) and (6), respectively, with \hat{V} consistent in the sense of (7). Under the conditions in Theorem 3.12,

$$l^T (\hat{\beta}_w - \beta)/a_n \rightarrow_d N(0, 1),$$

where $l \in \mathcal{R}^p$, $l \neq 0$, and

$$a_n^2 = \text{Var}(l^T \tilde{\beta}) = l^T (Z^T V^{-1} Z)^{-1} l.$$
Proof
Using the same argument as in the proof of Theorem 3.12, we obtain that
\[l^\tau (\hat{\beta} - \beta) / a_n \rightarrow_d N(0, 1). \]
By Slutsky’s theorem, the result follows from
\[l^\tau \hat{\beta}_w - l^\tau \hat{\beta} = o_p(a_n). \]
Define
\[\xi_n = l^\tau (Z^\tau \hat{V}^{-1} Z)^{-1} Z^\tau (\hat{V}^{-1} - V^{-1})\epsilon \]
and
\[\zeta_n = l^\tau [(Z^\tau \hat{V}^{-1} Z)^{-1} - (Z^\tau V^{-1} Z)^{-1}] Z^\tau V^{-1} \epsilon. \]
Then
\[l^\tau \hat{\beta}_w - l^\tau \hat{\beta} = \xi_n + \zeta_n. \]
The result follows from \(\xi_n = o_p(a_n) \) and \(\zeta_n = o_p(a_n) \) (details are in the textbook).
Remarks

- Theorem 3.17 shows that as long as \hat{V} is consistent in the sense of (7), the weighted LSE $\hat{\beta}_w$ is asymptotically as efficient as $\hat{\beta}$, which is the BLUE if V is known.

- By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the LSE $l^\tau \hat{\beta}$ w.r.t. the weighted LSE $l^\tau \hat{\beta}_w$ is

$$\frac{l^\tau (Z^\tau V^{-1}Z)^{-1}l}{l^\tau (Z^\tau Z)^{-1}Z^\tau VZ(Z^\tau Z)^{-1}l},$$

which is always less than 1 and equals 1 if $l^\tau \hat{\beta}$ is a BLUE (in which case $\hat{\beta} = \hat{\beta}$).

- Finding a consistent \hat{V} is possible when V has a certain type of structure.
Example 3.29
Consider model (1). Suppose that $V = \text{Var}(\epsilon)$ is a block diagonal matrix with the ith diagonal block

$$
\sigma^2 I_{m_i} + U_i \Sigma U_i^T, \quad i = 1, \ldots, k,
$$

where m_i's are integers bounded by a fixed integer m, $\sigma^2 > 0$ is an unknown parameter, Σ is a $q \times q$ unknown nonnegative definite matrix, U_i is an $m_i \times q$ full rank matrix whose columns are in $\mathcal{R}(W_i)$, $q < \inf_i m_i$, and W_i is the $p \times m_i$ matrix such that $Z^\tau = (W_1 \ W_2 \ldots \ W_k)$.

Under (8), a consistent \hat{V} can be obtained if we can obtain consistent estimators of σ^2 and Σ. Let $X = (Y_1, \ldots, Y_k)$, where Y_i is an m_i-vector, and let R_i be the matrix whose columns are linearly independent rows of W_i. Then

$$
\hat{\sigma}^2 = \frac{1}{n - kq} \sum_{i=1}^{k} Y_i^\tau [I_{m_i} - R_i (R_i^T R_i)^{-1} R_i^T] Y_i
$$

is an unbiased estimator of σ^2.
Example 3.29 (continued)

Assume that Y_i's are independent and that $\sup_i E|\epsilon_i|^{2+\delta} < \infty$ for some $\delta > 0$.

Then $\hat{\sigma}^2$ is consistent for σ^2 (exercise).

Let $r_i = Y_i - W_i \hat{\beta}$ and

$$\hat{\Sigma} = \frac{1}{k} \sum_{i=1}^k \left[(U_i^T U_i)^{-1} U_i^T r_i r_i^T U_i (U_i^T U_i)^{-1} - \hat{\sigma}^2 (U_i^T U_i)^{-1} \right].$$

It can be shown (exercise) that $\hat{\Sigma}$ is consistent for Σ in the sense that $\|\hat{\Sigma} - \Sigma\|_{\text{max}} \to_p 0$ or, equivalently, $\|\hat{\Sigma} - \Sigma\| \to_p 0$ (see Exercise 116).