ST5215: Advanced Statistical Theory

Chen Zehua

Department of Statistics & Applied Probability

Monday, October 24, 2011
The 2nd method for deriving UMVUE: conditioning

- Find an unbiased estimator of \(\vartheta \), say \(U(X) \).
- Conditioning on a sufficient and complete statistic \(T(X) \): \(E[U(X)|T] \) is the UMVUE of \(\vartheta \).
- The distribution of \(T \) is not needed. We only need to work out the conditional expectation \(E[U(X)|T] \).
- From the uniqueness of the UMVUE, it does not matter which \(U(X) \) is used. Thus, \(U(X) \) should be chosen so as to make the calculation of \(E[U(X)|T] \) as easy as possible.
Example 3.3

Let X_1, \ldots, X_n be i.i.d. from the exponential distribution $E(0, \theta)$ with p.d.f. $f_\theta(x) = \frac{1}{\theta} e^{-x/\theta} I_{(0, \infty)}(x)$.

Consider the estimation of $\vartheta = 1 - F_\theta(t)$.

\bar{X} is sufficient and complete for $\theta > 0$.

$I_{(t, \infty)}(X_1)$ is unbiased for ϑ,

$$E[I_{(t, \infty)}(X_1)] = P(X_1 > t) = \vartheta.$$

Hence

$$T(X) = E[I_{(t, \infty)}(X_1)|\bar{X}] = P(X_1 > t|\bar{X})$$

is the UMVUE of ϑ.

If the conditional distribution of X_1 given \bar{X} is available, then we can calculate $P(X_1 > t|\bar{X})$ directly.

By Basu’s theorem (Theorem 2.4), X_1/\bar{X} and \bar{X} are independent.

By Proposition 1.10(vii),

$$P(X_1 > t|\bar{X} = \bar{x}) = P(X_1/\bar{X} > t/\bar{x}|\bar{X} = \bar{x}) = P(X_1/\bar{X} > t/\bar{x}).$$
To compute this unconditional probability, we need the distribution of
\[
X_1 / \sum_{i=1}^{n} X_i = X_1 / \left(X_1 + \sum_{i=2}^{n} X_i \right).
\]

Using the transformation technique discussed in §1.3.1 and the fact that $\sum_{i=2}^{n} X_i$ is independent of X_1 and has a gamma distribution, we obtain that $X_1 / \sum_{i=1}^{n} X_i$ has the Lebesgue p.d.f. $(n - 1)(1 - x)^{n-2}I_{(0,1)}(x)$. Hence

\[
P(X_1 > t|\bar{X} = \bar{x}) = (n - 1) \int_{t/(n\bar{x})}^{1} (1 - x)^{n-2} dx = \left(1 - \frac{t}{n\bar{x}}\right)^{n-1}
\]

and the UMVUE of ϑ is

\[
T(X) = \left(1 - \frac{t}{n\bar{X}}\right)^{n-1}.
\]
Example 3.4
Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \sigma^2)$ with unknown $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.

From Example 2.18, $T = (\bar{X}, S^2)$ is sufficient and complete for $\theta = (\mu, \sigma^2)$

\bar{X} and $(n-1)S^2/\sigma^2$ are independent

\bar{X} has the $N(\mu, \sigma^2/n)$ distribution

S^2 has the chi-square distribution χ^2_{n-1}.

Using the method of solving for h directly, we find that

- the UMVUE for μ is \bar{X};
- the UMVUE of μ^2 is $\bar{X}^2 - S^2/n$;
- the UMVUE for σ^r with $r > 1 - n$ is $k_{n-1,r}S^r$, where

\[
k_{n,r} = \frac{n^{r/2}\Gamma\left(\frac{n}{2}\right)}{2^{r/2}\Gamma\left(\frac{n+r}{2}\right)}
\]

- the UMVUE of μ/σ is $k_{n-1,-1}\bar{X}/S$, if $n > 2$.
Example 3.4 (continued)

Suppose that \(\vartheta \) satisfies \(P(X_1 \leq \vartheta) = p \) with a fixed \(p \in (0, 1) \). Let \(\Phi \) be the c.d.f. of the standard normal distribution. Then

\[
\vartheta = \mu + \sigma \Phi^{-1}(p)
\]

and its UMVUE is

\[
\bar{X} + k_{n-1,1} S \Phi^{-1}(p).
\]
Example 3.4 (continued)

Suppose that ϑ satisfies $P(X_1 \leq \vartheta) = p$ with a fixed $p \in (0, 1)$. Let Φ be the c.d.f. of the standard normal distribution. Then

$$\vartheta = \mu + \sigma \Phi^{-1}(p)$$

and its UMVUE is

$$\bar{X} + k_{n-1,1}S\Phi^{-1}(p).$$

Let c be a fixed constant and

$$\vartheta = P(X_1 \leq c) = \Phi \left(\frac{c - \mu}{\sigma} \right).$$

We can find the UMVUE of ϑ using the method of conditioning. Since $I_{(-\infty,c)}(X_1)$ is an unbiased estimator of ϑ, the UMVUE of ϑ is

$$E[I_{(-\infty,c)}(X_1)|T] = P(X_1 \leq c|T).$$

By Basu’s theorem, the ancillary statistic $Z(X) = (X_1 - \bar{X})/S$ is independent of $T = (\bar{X}, S^2)$.
Example 3.4 (continued)

Then, by Proposition 1.10(vii),

\[P \left(X_1 \leq c \mid T = (\bar{x}, s^2) \right) = P \left(Z \leq \frac{c - \bar{X}}{S} \middle| T = (\bar{x}, s^2) \right) \]
\[= P \left(Z \leq \frac{c - \bar{x}}{s} \right). \]

It can be shown that \(Z \) has the Lebesgue p.d.f.

\[f(z) = \frac{\sqrt{n} \Gamma \left(\frac{n-1}{2} \right)}{\sqrt{\pi} (n - 1) \Gamma \left(\frac{n-2}{2} \right)} \left[1 - \frac{nz^2}{(n - 1)^2} \right]^{(n/2)-2} I_{(0,(n-1)/\sqrt{n})}(|z|) \]

Hence the UMVUE of \(\vartheta \) is

\[P(X_1 \leq c \mid T) = \int_{-(n-1)/\sqrt{n}}^{(c-\bar{X})/S} f(z) \, dz \]
Example 3.4 (continued)

Suppose that we would like to estimate

\[\vartheta = \frac{1}{\sigma} \Phi' \left(\frac{c - \mu}{\sigma} \right), \]

the Lebesgue p.d.f. of \(X_1 \) evaluated at a fixed \(c \), where \(\Phi' \) is the first-order derivative of \(\Phi \).

By the previous result, the conditional p.d.f. of \(X_1 \) given \(\bar{X} = \bar{x} \) and \(S^2 = s^2 \) is \(s^{-1} f \left(\frac{x - \bar{x}}{s} \right) \).

Let \(f_T \) be the joint p.d.f. of \(T = (\bar{X}, S^2) \).

Then

\[\vartheta = \int \int \frac{1}{s} f \left(\frac{c - \bar{X}}{s} \right) f_T(t) dt = E \left[\frac{1}{S} f \left(\frac{c - \bar{X}}{S} \right) \right]. \]

Hence the UMVUE of \(\vartheta \) is

\[\frac{1}{S} f \left(\frac{c - \bar{X}}{S} \right). \]
Example

Let X_1, \ldots, X_n be i.i.d. with Lebesgue p.d.f. $f_\theta(x) = \theta x^{-2} I_{(\theta,\infty)}(x)$, where $\theta > 0$ is unknown.

Suppose that $\vartheta = P(X_1 > t)$ for a constant $t > 0$. The smallest order statistic $X_{(1)}$ is sufficient and complete for θ. Hence, the UMVUE of ϑ is

$$
P(X_1 > t | X_{(1)}) = P(X_1 > t | X_{(1)} = x_{(1)})$$

$$= P \left(\frac{X_1}{X_{(1)}} > \frac{t}{x_{(1)}} \middle| X_{(1)} = x_{(1)} \right)$$

$$= P \left(\frac{X_1}{X_{(1)}} > \frac{t}{x_{(1)}} \middle| X_{(1)} = x_{(1)} \right)$$

$$= P \left(\frac{X_1}{x_{(1)}} > s \right)$$

(Basu’s theorem), where $s = t/x_{(1)}$. If $s \leq 1$, this probability is 1.
Consider $s > 1$ and assume $\theta = 1$ in the calculation:

$$P\left(\frac{X_1}{X_{(1)}} > s\right) = \sum_{i=1}^{n} P\left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i\right)$$

$$= \sum_{i=2}^{n} P\left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i\right)$$

$$= (n - 1)P\left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_n\right)$$

$$= (n - 1)P\left(X_1 > sX_n, X_2 > X_n, \ldots, X_{n-1} > X_n\right)$$

$$= (n - 1) \int_{x_1 > sx_n, x_2 > x_n, \ldots, x_{n-1} > x_n} \prod_{i=1}^{n} \frac{1}{x_i^2} dx_1 \cdots dx_n$$

$$= (n - 1) \int_{1}^{\infty} \left[\int_{sx_n}^{\infty} \prod_{i=2}^{n-1} \left(\int_{x_n}^{\infty} \frac{1}{x_i^2} dx_i \right) \frac{1}{x_1^2} dx_1 \right] \frac{1}{x_n^2} dx_n$$

$$= (n - 1) \int_{1}^{\infty} \frac{1}{sx_n^{n+1}} dx_n = \frac{(n - 1)X_{(1)}}{nt}$$
Example (continued)

This shows that the UMVUE of $P(X_1 > t)$ is

$$h(X_{(1)}) = \begin{cases} \frac{(n-1)X_{(1)}}{nt} & X_{(1)} < t \\ 1 & X_{(1)} \geq t \end{cases}$$
Example (continued)

This shows that the UMVUE of $P(X_1 > t)$ is

$$h(X_{(1)}) = \begin{cases} \frac{(n-1)X_{(1)}}{nt} & X_{(1)} < t \\ 1 & X_{(1)} \geq t \end{cases}$$

Use the method of finding h:

The UMVUE must be $h(X_{(1)})$

The Lebesgue p.d.f. of $X_{(1)}$ is $\frac{n^\theta}{x^{n+1}} I(\theta, \infty)(x)$. If $\theta \geq t$, then $P(X_1 > t) = 1$ and $P(t > X_{(1)}) = 0$. Hence, if $X_{(1)} \geq t$, $h(X_{(1)})$ must be 1 a.s. P_θ

The value of $h(X_{(1)})$ for $X_{(1)} < t$ is not specified.
If $\theta < t$,

$$E[h(X_{(1)})] = \int_{\theta}^{\infty} h(x) \frac{n\theta^n}{x^{n+1}} \, dx$$

$$= \int_{\theta}^{t} h(x) \frac{n\theta^n}{x^{n+1}} \, dx + \int_{t}^{\infty} \frac{n\theta^n}{x^{n+1}} \, dx = \int_{\theta}^{t} h(x) \frac{n\theta^n}{x^{n+1}} \, dx + \frac{\theta^n}{t^n}$$

Since $P(X_1 > t) = \theta/t$, we have

$$\frac{\theta}{t} = \int_{\theta}^{t} h(x) \frac{n\theta^n}{x^{n+1}} \, dx + \frac{\theta^n}{t^n} \text{ i.e. } \frac{1}{t\theta^{n-1}} = \int_{\theta}^{t} h(x) \frac{n}{x^{n+1}} \, dx + \frac{1}{t^n}$$

Differentiating both sizes w.r.t. θ leads to

$$-\frac{n-1}{t\theta^n} = -h(\theta) \frac{n}{\theta^{n+1}}$$

Hence, for any $X_{(1)} < t$,

$$h(X_{(1)}) = \frac{(n-1)X_{(1)}}{nt}.$$
A necessary and sufficient condition

Theorem 3.2
Let \mathcal{U} be the set of all unbiased estimators of θ with finite variances and T be an unbiased estimator of θ with $E(T^2) < \infty$.

(i) A necessary and sufficient condition for $T(X)$ to be a UMVUE of θ is that $E[T(X)U(X)] = 0$ for any $U \in \mathcal{U}$ and any $P \in \mathcal{P}$.

(ii) Suppose that $T = h(\tilde{T})$, where \tilde{T} is a sufficient statistic for $P \in \mathcal{P}$ and h is a Borel function. Let $\mathcal{U}_{\tilde{T}}$ be the subset of \mathcal{U} consisting of Borel functions of \tilde{T}. Then a necessary and sufficient condition for T to be a UMVUE of θ is that $E[T(X)U(X)] = 0$ for any $U \in \mathcal{U}_{\tilde{T}}$ and any $P \in \mathcal{P}$.
Proof of Theorem 3.2(i)

Suppose that T is a UMVUE of ϑ. Then $T_c = T + cU$, where $U \in \mathcal{U}$ and c is a fixed constant, is also unbiased for ϑ and, thus,

$$\operatorname{Var}(T_c) \geq \operatorname{Var}(T) \quad c \in \mathcal{R}, \ P \in \mathcal{P},$$

which is the same as

$$c^2 \operatorname{Var}(U) + 2c \operatorname{Cov}(T, U) \geq 0 \quad c \in \mathcal{R}, \ P \in \mathcal{P}.$$

This is impossible unless $\operatorname{Cov}(T, U) = E(TU) = 0$ for any $P \in \mathcal{P}$.

Suppose now $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$. Let T_0 be another unbiased estimator of ϑ with $\operatorname{Var}(T_0) < \infty$. Then $T - T_0 \in \mathcal{U}$ and, hence,

$$E[T(T - T_0)] = 0 \quad P \in \mathcal{P},$$

which with the fact that $ET = ET_0$ implies that

$$\operatorname{Var}(T) = \operatorname{Cov}(T, T_0) \quad P \in \mathcal{P}.$$

Note that $[\operatorname{Cov}(T, T_0)]^2 \leq \operatorname{Var}(T) \operatorname{Var}(T_0)$. Hence $\operatorname{Var}(T) \leq \operatorname{Var}(T_0)$ for any $P \in \mathcal{P}$.
Proof of Theorem 3.2(ii)

It suffices to show that \(E(TU) = 0 \) for any \(U \in \mathcal{U}_T \) and \(P \in \mathcal{P} \) implies that \(E(TU) = 0 \) for any \(U \in \mathcal{U} \) and \(P \in \mathcal{P} \).

Let \(U \in \mathcal{U} \).

Then \(E(U|\tilde{T}) \in \mathcal{U}_{\tilde{T}} \) and the result follows from the fact that \(T = h(\tilde{T}) \) and

\[
E(TU) = E[E(TU|\tilde{T})] = E[E(h(\tilde{T})U|\tilde{T})] = E[h(\tilde{T})E(U|\tilde{T})].
\]
Proof of Theorem 3.2(ii)

It suffices to show that $E(TU) = 0$ for any $U \in \mathcal{U}_{\tilde{T}}$ and $P \in \mathcal{P}$ implies that $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$.

Let $U \in \mathcal{U}$.

Then $E(U|\tilde{T}) \in \mathcal{U}_{\tilde{T}}$ and the result follows from the fact that $T = h(\tilde{T})$ and

$$E(TU) = E[E(TU|\tilde{T})] = E[E(h(\tilde{T})U|\tilde{T})] = E[h(\tilde{T})E(U|\tilde{T})].$$

Theorem 3.2 can be used

- to find a UMVUE,
- to check whether a particular estimator is a UMVUE, and
- to show the nonexistence of any UMVUE.

If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only need to focus on functions of the sufficient statistic and, hence, Theorem 3.2(ii) is more convenient to use.
Corollary 3.1

(i) Let T_j be a UMVUE of ϑ_j, $j = 1, \ldots, k$, where k is a fixed positive integer. Then $\sum_{j=1}^{k} c_j T_j$ is a UMVUE of $\vartheta = \sum_{j=1}^{k} c_j \vartheta_j$ for any constants c_1, \ldots, c_k.

(ii) Let T_1 and T_2 be two UMVUE's of ϑ. Then $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Example 3.7
Let X_1, \ldots, X_n be i.i.d. from the uniform distribution on the interval $(0, \theta)$. In Example 3.1, $(1 + n^{-1})X_{(n)}$ is shown to be the UMVUE for θ when the parameter space is $\Theta = (0, \infty)$. Suppose now that $\Theta = [1, \infty)$. Then $X_{(n)}$ is not complete, although it is still sufficient for θ. Thus, Theorem 3.1 does not apply to $X_{(n)}$.
Example 3.7 (continued)

We now use Theorem 3.2(ii) to find a UMVUE of θ. Let $U(X_n)$ be an unbiased estimator of 0. Since X_n has the Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{0,\theta}(x)$,

$$0 = \int_0^1 U(x)x^{n-1}dx + \int_1^\theta U(x)x^{n-1}dx \quad \text{for all } \theta \geq 1.$$

This implies that $U(x) = 0$ a.e. Lebesgue measure on $[1, \infty)$ and

$$\int_0^1 U(x)x^{n-1}dx = 0.$$

Consider $T = h(X_n)$. To have $E(TU) = 0$, we must have

$$\int_0^1 h(x)U(x)x^{n-1}dx = 0.$$

Thus, we may consider the following function:

$$h(x) = \begin{cases}
c & 0 \leq x \leq 1 \\
bx & x > 1,
\end{cases}$$

where c and b are some constants.
Example 3.7 (continued)

From the previous discussion,

\[E[h(X(n))U(X(n))] = 0, \quad \theta \geq 1. \]

Since \(E[h(X(n))] = \theta \), we obtain that

\[
\begin{align*}
\theta &= cP(X(n) \leq 1) + bE[X(n)I_{(1,\infty)}(X(n))] \\
&= c\theta^{-n} + \left[b n / (n + 1) \right] (\theta - \theta^{-n}).
\end{align*}
\]

Thus, \(c = 1 \) and \(b = (n + 1)/n \). The UMVUE of \(\theta \) is then

\[
h(X(n)) = \begin{cases}
1 & 0 \leq X(n) \leq 1 \\
(1 + n^{-1})X(n) & X(n) > 1.
\end{cases}
\]

This estimator is better than \((1 + n^{-1})X(n)\), which is the UMVUE when \(\Theta = (0, \infty) \) and does not make use of the information about \(\theta \geq 1 \). When \(\Theta = (0, \infty) \), this estimator is not unbiased.

In fact, \(h(X(n)) \) is complete and sufficient for \(\theta \in [1, \infty) \).
Example 3.7 (continued)

It suffices to show that

\[g(X(n)) = \begin{cases}
1 & 0 \leq X(n) \leq 1 \\
X(n) & X(n) > 1.
\end{cases} \]

is complete and sufficient for \(\theta \in [1, \infty) \).

The sufficiency follows from the fact that the joint p.d.f. of \(X_1, \ldots, X_n \) is

\[\frac{1}{\theta^n} l_{(0,\theta)}(X(n)) = \frac{1}{\theta^n} l_{(0,\theta)}(g(X(n))). \]

If \(E[f(g(X(n)))] = 0 \) for all \(\theta > 1 \), then

\[0 = \int_0^\theta f(g(x)) x^{n-1} \, dx = \int_0^1 f(1) x^{n-1} \, dx + \int_1^\theta f(x) x^{n-1} \, dx \]

for all \(\theta > 1 \).

Letting \(\theta \to 1 \) we obtain that \(f(1) = 0 \).

Then

\[0 = \int_1^\theta f(x) x^{n-1} \, dx \]

for all \(\theta > 1 \), which implies \(f(x) = 0 \) a.e. for \(x > 1 \).

Hence, \(g(X(n)) \) is complete.
Example 3.8

Let X be a sample (of size 1) from the uniform distribution $U(\theta - \frac{1}{2}, \theta + \frac{1}{2})$, $\theta \in \mathbb{R}$. There is no UMVUE of $\vartheta = g(\theta)$ for any nonconstant function g.

Note that an unbiased estimator $U(X)$ of 0 must satisfy

$$\int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} U(x) \, dx = 0 \quad \text{for all } \theta \in \mathbb{R}. $$

Differentiating both sides of the previous equation and applying the result of differentiation of an integral lead to

$$U(x) = U(x + 1) \quad \text{a.e. } m,$$

where m is the Lebesgue measure on \mathbb{R}.

If T is a UMVUE of $g(\theta)$, then $T(X)U(X)$ is unbiased for 0 and, hence,

$$T(x)U(x) = T(x + 1)U(x + 1) \quad \text{a.e. } m,$$

where $U(X)$ is any unbiased estimator of 0.
Example 3.8 (continued)

Since this is true for all \(U \),

\[T(x) = T(x + 1) \quad \text{a.e. } m. \]

Since \(T \) is unbiased for \(g(\theta) \),

\[g(\theta) = \int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} T(x) dx \quad \text{for all } \theta \in \mathcal{R}. \]

Differentiating both sides of the previous equation and applying the result of differentiation of an integral, we obtain that

\[g'(\theta) = T(\theta + \frac{1}{2}) - T(\theta - \frac{1}{2}) = 0 \quad \text{a.e. } m. \]