Estimable parameters

Let ϑ be a parameter in the family \mathcal{P}. If there exists an unbiased estimator of ϑ, i.e., there is $T(X)$ such that $E[T(X)] = \vartheta$ for any $P \in \mathcal{P}$, then ϑ is called an estimable parameter.

Definition 3.1 (UMVUE)

An unbiased estimator $T(X)$ of ϑ is called the uniformly minimum variance unbiased estimator (UMVUE) iff $\text{Var}(T(X)) \leq \text{Var}(U(X))$ for any $P \in \mathcal{P}$ and any other unbiased estimator $U(X)$ of ϑ.

- Since the mse of any unbiased estimator is its variance, a UMVUE is \mathcal{G}-optimal in mse with \mathcal{G} being the class of all unbiased estimators.
- One can similarly define the uniformly minimum risk unbiased estimator in statistical decision theory when we use an arbitrary loss instead of the squared error loss that corresponds to the mse.
Theorem 3.1 (Lehmann-Scheffé theorem)

Suppose that there exists a sufficient and complete statistic $T(X)$ for $P \in \mathcal{P}$.
If ϑ is estimable, then there is a unique unbiased estimator of ϑ that is of the form $h(T)$ with a Borel function h.
Furthermore, $h(T)$ is the unique UMVUE of ϑ. (Two estimators that are equal a.s. \mathcal{P} are treated as one estimator.)

Remarks

- This theorem is a consequence of Theorem 2.5(ii) (Rao-Blackwell theorem).
- One can easily extend this theorem to the case of the uniformly minimum risk unbiased estimator under any loss function $L(P,a)$ that is strictly convex in a.
- The uniqueness of the UMVUE follows from the completeness of $T(X)$.
The 1st method for deriving UMVUE: solving for h

- Find a sufficient and complete statistic T and its distribution.
- Try some function h to see if $E[h(T)]$ is related to ϑ.
- Solve for h such that $E[h(T)] = \vartheta$ for all P.

Example 3.1
Let $X_1, ..., X_n$ be i.i.d. from the uniform distribution on $(0, \theta)$, $\theta > 0$. The order statistic $X(n)$ is sufficient and complete with Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0, \theta)}(x)$.

(i) Consider $\vartheta = \theta$. Since

$$EX(n) = n\theta^{-n} \int_0^\theta x^n \, dx = \frac{n}{n+1} \theta.$$

Hence an unbiased estimator of θ is $(n + 1)X(n)/n$, which is the UMVUE.
Example 3.1 (cont.)

(ii) Consider now $\vartheta = g(\theta)$, where g is a differentiable function on $(0, \infty)$.
An unbiased estimator $h(X(n))$ of ϑ must satisfy

$$\theta^n g(\theta) = n \int_0^\theta h(x)x^{n-1}dx \quad \text{for all } \theta > 0.$$

Differentiating both sizes of the previous equation and applying the result of differentiation of an integral (Royden (1968, §5.3)) lead to

$$n\theta^{n-1}g(\theta) + \theta^n g'(\theta) = nh(\theta)\theta^{n-1}.$$

Hence, the UMVUE of ϑ is

$$h(X(n)) = g(X(n)) + n^{-1}X(n)g'(X(n)).$$

In particular, if $\vartheta = \theta$, then the UMVUE of θ is $(1 + n^{-1})X(n)$.
Example 3.2

Let X_1, \ldots, X_n be i.i.d. from the Poisson distribution $P(\theta)$ with an unknown $\theta > 0$. $T(X) = \sum_{i=1}^{n} X_i$ is sufficient and complete for $\theta > 0$ and has the Poisson distribution $P(n\theta)$.

Suppose that $\vartheta = g(\theta)$, where g is a smooth function such that $g(x) = \sum_{j=0}^{\infty} a_j x^j$, $x > 0$. An unbiased estimator $h(T)$ of ϑ must satisfy (for any $\theta > 0$):

$$\sum_{t=0}^{\infty} \frac{h(t)n^t}{t!} \theta^t = e^{n\theta} g(\theta)$$

$$= \sum_{k=0}^{\infty} \frac{n^k}{k!} \theta^k \sum_{j=0}^{\infty} a_j \theta^j$$

$$= \sum_{t=0}^{\infty} \left(\sum_{j,k: j+k=t} \frac{n^k a_j}{k!} \right) \theta^t.$$
Example 3.2 (continued)

Thus, a comparison of coefficients in front of θ^t leads to

$$h(t) = \frac{t!}{n^t} \sum_{j,k: j+k=t} \frac{n^k a_j}{k!},$$

i.e., $h(T)$ is the UMVUE of ϑ.

In particular, if $\vartheta = \theta^r$ for some fixed integer $r \geq 1$, then $a_r = 1$ and $a_k = 0$ if $k \neq r$ and

$$h(t) = \begin{cases}
0 & t < r \\
\frac{t!}{n^r(t-r)!} & t \geq r
\end{cases}$$
Example 3.5

Let $X_1, ..., X_n$ be i.i.d. from a power series distribution (see Exercise 13 in §2.6), i.e.,

$$P(X_i = x) = \gamma(x)\theta^x / c(\theta), \quad x = 0, 1, 2, ...,$$

with a known function $\gamma(x) \geq 0$ and an unknown parameter $\theta > 0$. It turns out that the joint distribution of $X = (X_1, ..., X_n)$ is in an exponential family with a sufficient and complete statistic $T(X) = \sum_{i=1}^{n} X_i$.

Furthermore, the distribution of T is also in a power series family, i.e.,

$$P(T = t) = \gamma_n(t)\theta^t / [c(\theta)]^n, \quad t = 0, 1, 2, ...,$$

where $\gamma_n(t)$ is the coefficient of θ^t in the power series expansion of $[c(\theta)]^n$ (Exercise 13 in §2.6).

This result can help us to find the UMVUE of $\vartheta = g(\theta)$.

Example 3.5 (continued)

For example, by comparing both sides of

\[\sum_{t=0}^{\infty} h(t) \gamma_n(t) \theta^t = [c(\theta)]^{n-p} \theta^r, \]

we conclude that the UMVUE of \(\theta^r / [c(\theta)]^p \) is

\[
h(T) = \begin{cases}
0 & T < r \\
\frac{\gamma_{n-p}(T-r)}{\gamma_n(T)} & T \geq r,
\end{cases}
\]

where \(r \) and \(p \) are nonnegative integers.

In particular, the case of \(p = 1 \) produces the UMVUE \(\gamma(r)h(T) \) of the probability \(P(X_1 = r) = \gamma(r)\theta^r / c(\theta) \) for any nonnegative integer \(r \).
Example 3.6
Let X_1, \ldots, X_n be i.i.d. from an unknown population P in a nonparametric family \mathcal{P}.

We have discussed in §2.2 that in many cases the vector of order statistics, $T = (X_{(1)}, \ldots, X_{(n)})$, is sufficient and complete for $P \in \mathcal{P}$.

(For example, \mathcal{P} is the collection of all Lebesgue p.d.f.’s.)

Note that an estimator $\varphi(X_1, \ldots, X_n)$ is a function of T iff the function φ is symmetric in its n arguments.

Hence, if T is sufficient and complete, then a symmetric unbiased estimator of any estimable ϑ is the UMVUE.
Example 3.6

Let $X_1, ..., X_n$ be i.i.d. from an unknown population P in a nonparametric family \mathcal{P}.

We have discussed in §2.2 that in many cases the vector of order statistics, $T = (X_{(1)}, ..., X_{(n)})$, is sufficient and complete for $P \in \mathcal{P}$.

(For example, \mathcal{P} is the collection of all Lebesgue p.d.f.’s.)

Note that an estimator $\varphi(X_1, ..., X_n)$ is a function of T iff the function φ is symmetric in its n arguments.

Hence, if T is sufficient and complete, then a symmetric unbiased estimator of any estimable ϑ is the UMVUE.

Specific examples

- \bar{X} is the UMVUE of $\vartheta = EX_1$;
- S^2 is the UMVUE of $\text{Var}(X_1)$;
- $n^{-1} \sum_{i=1}^{n} X_i^2 - S^2$ is the UMVUE of $(EX_1)^2$;
- $F_n(t)$ is the UMVUE of $P(X_1 \leq t)$ for any fixed t.
Example 3.6 (continued)

The previous conclusions are not true if T is *not* sufficient and complete for $P \in \mathcal{P}$.
Example 3.6 (continued)

The previous conclusions are not true if T is *not* sufficient and complete for $P \in \mathcal{P}$.

Claim

For example, if $n > 2$ and \mathcal{P} contains all symmetric distributions having Lebesgue p.d.f.’s and finite means, then there is no UMVUE for $\mu = EX_1$.

Example 3.6 (continued)

The previous conclusions are not true if \(T \) is not sufficient and complete for \(P \in \mathcal{P} \).

Claim

For example, if \(n > 2 \) and \(\mathcal{P} \) contains all symmetric distributions having Lebesgue p.d.f.’s and finite means, then there is no UMVUE for \(\mu = EX_1 \).

Proof

Suppose that \(T \) is a UMVUE of \(\mu \).
Let \(\mathcal{P}_1 = \{ N(\mu, 1) : \mu \in \mathcal{R} \} \).
Since the sample mean \(\bar{X} \) is UMVUE when \(\mathcal{P}_1 \) is considered, and the Lebesgue measure is dominated by any \(P \in \mathcal{P}_1 \), we conclude that \(T = \bar{X} \) a.e. Lebesgue measure.

Let \(\mathcal{P}_2 \) be the family of uniform distributions on \((\theta_1 - \theta_2, \theta_1 + \theta_2)\), \(\theta_1 \in \mathcal{R} \), \(\theta_2 > 0 \).
Then \((X_{(1)} + X_{(n)})/2 \) is the UMVUE when \(\mathcal{P}_2 \) is considered, where \(X_{(j)} \) is the \(j \)th order statistic.
Proof (continued)

Then $\bar{X} = (X_{(1)} + X_{(n)})/2$ a.s. P for any $P \in \mathcal{P}_2$, which is impossible if $n > 2$.

Hence, there is no UMVUE of μ.

What if $n = 1$?

Consider the sub-family $\mathcal{P}_1 = \{N(\mu, 1) : \mu \in \mathbb{R}\}$.

X_1 is complete for $P \in \mathcal{P}_1$.

Since P is dominated by \mathcal{P}_1, X_1 is complete for $P \in \mathcal{P}_1$.

X_1 is sufficient for $P \in \mathcal{P}_1$.

Thus, \bar{X}_1 is the UMVUE of μ.

What if $n = 2$?

$T = (X_{(1)}, X_{(2)})$ is complete for $P \in \mathcal{P}_2$.

Since P is dominated by \mathcal{P}_2, T is complete for $P \in \mathcal{P}_2$.

T is also sufficient for $P \in \mathcal{P}_2$.

Thus, $\bar{X} = (X_{(1)} + X_{(2)})/2 = (X_{(1)} + X_{(2)})/2$ is the UMVUE of μ.

Proof (continued)

Then $\bar{X} = (X_1 + X_n)/2$ a.s. P for any $P \in \mathcal{P}_2$, which is impossible if $n > 2$.
Hence, there is no UMVUE of μ.

What if $n = 1$?
Consider the sub-family $\mathcal{P}_1 = \{N(\mu, 1) : \mu \in \mathcal{R}\}$.
X_1 is complete for $P \in \mathcal{P}_1$.
Since \mathcal{P} is dominated by \mathcal{P}_1, X_1 is complete for $P \in \mathcal{P}$.
X_1 is sufficient for $P \in \mathcal{P}$.
Thus, X_1 is the UMVUE of μ.
Proof (continued)

Then \(\bar{X} = (X_1 + X_n)/2 \) a.s. \(P \) for any \(P \in \mathcal{P}_2 \), which is impossible if \(n > 2 \).

Hence, there is no UMVUE of \(\mu \).

What if \(n = 1 \)?

Consider the sub-family \(\mathcal{P}_1 = \{ N(\mu, 1) : \mu \in \mathcal{R} \} \).

\(X_1 \) is complete for \(P \in \mathcal{P}_1 \).

Since \(\mathcal{P} \) is dominated by \(\mathcal{P}_1 \), \(X_1 \) is complete for \(P \in \mathcal{P} \).

\(X_1 \) is sufficient for \(P \in \mathcal{P} \).

Thus, \(X_1 \) is the UMVUE of \(\mu \).

What if \(n = 2 \)?

\(T = (X_1, X_2) \) is complete for \(P \in \mathcal{P}_2 \).

Since \(\mathcal{P} \) is dominated by \(\mathcal{P}_2 \), \(T \) is complete for \(P \in \mathcal{P} \).

\(T \) is also sufficient for \(P \in \mathcal{P} \).

Thus, \(\bar{X} = (X_1 + X_2)/2 = (X_1 + X_2)/2 \) is the UMVUE of \(\mu \).