1. Suppose, conditionally on \(M = m \) that \(Y \sim P(m) \), the Poisson distribution with parameter \(m \), and that \(M \) in turn has the gamma distribution \(M \sim G(\alpha \nu, \nu) \) with mean \(\mu = E(M) = \alpha \nu \) and coefficient of variation \(\sqrt{\nu} \). Show that the unconditional mean and variance are \(E(Y) = \mu \), and
\[
Var(Y) = \alpha \nu + \alpha^2 \nu.
\]

Suppose now that \(Y \) has independent components generated in the above way with \(\mu_i = E(Y_i) \) not all equal. Show that if \(\nu_i = \nu \), a known constant, then the distribution of \(Y \) has the natural exponential-family form with variance function \(V(\mu) = \mu + \mu^2/\nu \), which is quadratic in \(\mu \). On the other hand if \(\alpha_i = \alpha \), a constant, show that the variance function has the standard over-dispersed Poisson form \(V(\mu) = \phi \mu \) with \(\phi = 1 + \alpha \), but that \(Y \) does not then have the linear exponential-family form.

More generally, if both \(\alpha \) and \(\nu \) vary according to the relations
\[
\alpha_i = \theta + \psi \mu_i, \quad \nu_i^{-1} = \psi + \theta \mu_i^{-1},
\]
show that \(V(\mu) = \mu + \theta \mu + \psi \mu^2 \) and that the distribution of \(Y \) again does not have the linear exponential-family form. Compare the exact likelihood with the corresponding quasi-likelihood in the second and third cases.

2. Consider the model
\[
Y_{1i} = \omega_1 + \rho R_i \cos \epsilon_i \cos \phi - \lambda R_i \sin \epsilon_i \sin \phi \\
Y_{2i} = \omega_2 + \rho R_i \cos \epsilon_i \sin \phi + \lambda R_i \sin \epsilon_i \cos \phi
\]
for an ellipse centered at \((\omega_1, \omega_2)\) with semi-axes of length \(\rho, \lambda \) inclined at an angle \(\phi \) to the \(x \)-axis. Assume that \(R_i \) are independent and identically distributed with mean 1, and independently of the \(\epsilon \)s. Construct an unbiased estimating function for the parameters \((\omega_1, \omega_2, \rho, \lambda, \phi)\).
Take as the elementary estimating functions
\[R_i - 1 = \left(\frac{X_{i1}^2}{\rho^2} + \frac{X_{i2}^2}{\lambda^2} \right)^{1/2} - 1, \]
where
\[X_{i1} = (Y_{i1} - \omega_1) \cos \phi + (Y_{i2} - \omega_2) \sin \phi = \rho R_i \cos \epsilon_i \]
\[X_{i2} = -(Y_{i1} - \omega_1) \sin \phi + (Y_{i2} - \omega_2) \cos \phi = \lambda R_i \sin \epsilon_i. \]
Show that the required coefficients are
\[D_{i1} = \cos \epsilon_i \cos \phi / \rho - \sin \epsilon_i \sin \phi / \lambda, \]
\[D_{i2} = \cos \epsilon_i \sin \phi / \rho + \sin \epsilon_i \cos \phi / \lambda, \]
\[D_{i3} = \cos^2 \epsilon_i / \rho, \]
\[D_{i4} = \sin^2 \epsilon_i / \lambda, \]
\[D_{i5} = (\rho - \lambda) \cos \epsilon_i \sin \epsilon_i. \]
Hence compute the information matrix for the five parameters.

3. Suppose that the random variables \(Y_1, \ldots, Y_n \) are independent with variance \(\text{var}(Y_i) = \sigma^2 \mu_i^2 \), where the coefficient of variation, \(\sigma \), is unknown. Suppose that inference is required for \(\beta_1 \), where
\[\log(\mu_i) = \beta_0 + \beta_1 (x_i - \bar{x}_i)^2. \]
Show that the quasi-likelihood estimation of \(\beta_0, \beta_1 \) are uncorrelated with asymptotic variances
\[\text{var}(\hat{\beta}_0) = \sigma^2 / n, \quad \text{var}(\hat{\beta}_1) = \sigma^2 / \sum_{i=1}^n (x_i - \bar{x}_i)^2. \]