8. The crossover study

§8.1. Issues on crossover design

• What is crossover design?

 – A crossover design is a scheme such that
different treatments are applied in a random
order to the same patient sequentially over
time.

 E.g., in a study for the comparison of
three treatments A, B and C, for a par-
ticular patient, the treatments are ap-
plied in the order B-C-A sequentially.

 – As many different orders of the treatments
as possible are considered. The number of
patients administered with different orders
are made as equal as possible.

 E.g., with three treatments, the ideal
scheme is to apply all the following or-
ders with equal number of patients for each order:

- A washout period is imposed in between any two subsequent treatments to avoid the carry-over of the effect of the previous treatment to the subsequent period.

- Crossover design is only applicable in the situation where
 1. Disease is chronic;
 2. The effect of treatments can be measured after a short period of administration;
 3. The effect of any treatment does not last too long (it is possible to have a short washout period).

• **Pros and cons of crossover design**

 In crossover study, each patient serves as his
or her own control. This effectively controls all prognostic variables associated with the patients.

The major pitfall of crossover designs is that the carry-over effects, if not effectively washed out in the washout period, may either ruin the whole study if the data is not analyzed with caution or waste the resource put into the study.

§8.2. Two period crossover study

- Replication of 2×2 Latin squares

The data layout of a single square:

<table>
<thead>
<tr>
<th>Patient</th>
<th>Period</th>
<th>Sum</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A(X_1)</td>
<td>B(X_2)</td>
<td>$T_1 = X_1 + X_2$</td>
</tr>
<tr>
<td>2</td>
<td>B(Y_1)</td>
<td>A(Y_2)</td>
<td>$T_2 = Y_1 + Y_2$</td>
</tr>
</tbody>
</table>
The data layout of an example:

<table>
<thead>
<tr>
<th>Square</th>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>Sum</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5.1</td>
<td>3.8</td>
<td>$T_{11} = 8.9$</td>
<td>$D_{11} = 1.3$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.9</td>
<td>3.9</td>
<td>$T_{12} = 6.8$</td>
<td>$D_{12} = -1.0$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.6</td>
<td>1.0</td>
<td>$T_{21} = 1.6$</td>
<td>$D_{21} = -0.4$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.9</td>
<td>3.9</td>
<td>$T_{22} = 3.9$</td>
<td>$D_{22} = -0.7$</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4.8</td>
<td>3.1</td>
<td>$T_{31} = 7.9$</td>
<td>$D_{31} = 1.7$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4.0</td>
<td>5.8</td>
<td>$T_{32} = 9.8$</td>
<td>$D_{32} = -1.8$</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4.4</td>
<td>4.9</td>
<td>$T_{41} = 9.3$</td>
<td>$D_{41} = -0.5$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1.6</td>
<td>0.8</td>
<td>$T_{42} = 2.4$</td>
<td>$D_{42} = 0.8$</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2.3</td>
<td>1.3</td>
<td>$T_{51} = 3.6$</td>
<td>$D_{51} = 1.0$</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4.1</td>
<td>4.7</td>
<td>$T_{52} = 8.8$</td>
<td>$D_{52} = -0.6$</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4.9</td>
<td>2.3</td>
<td>$T_{61} = 7.2$</td>
<td>$D_{61} = 2.6$</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.2</td>
<td>0.9</td>
<td>$T_{62} = 4.1$</td>
<td>$D_{62} = 2.3$</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>6.8</td>
<td>4.5</td>
<td>$T_{71} = 11.3$</td>
<td>$D_{71} = 2.3$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2.3</td>
<td>4.0</td>
<td>$T_{72} = 6.3$</td>
<td>$D_{72} = -1.7$</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>6.1</td>
<td>2.2</td>
<td>$T_{81} = 8.3$</td>
<td>$D_{81} = 3.9$</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3.4</td>
<td>3.6</td>
<td>$T_{82} = 7.0$</td>
<td>$D_{82} = -0.2$</td>
</tr>
</tbody>
</table>
Expectation of the measurements

Notations:

μ: overall mean response;

π_j: effect of period j, $j = 1, 2$;

τ_1: effect of treatment A,

τ_2: effect of treatment B;

ρ_1: carry-over effect of treatment A,

ρ_2: carry-over effect of treatment B.

Expectations:

$$E(X_1) = \mu + \pi_1 + \tau_1,$$

$$E(X_2) = \mu + \pi_2 + \tau_2 + \rho_1,$$

$$E(Y_1) = \mu + \pi_1 + \tau_2,$$

$$E(Y_2) = \mu + \pi_2 + \tau_1 + \rho_2.$$
If follows from the above expectations that

\[E(D_1) = (\pi_1 - \pi_2) + (\tau_1 - \tau_2) - \rho_1, \]
\[E(D_2) = (\pi_1 - \pi_2) + (\tau_2 - \tau_1) - \rho_2, \]
\[E(T_1) = 2\mu + (\pi_1 + \pi_2) + (\tau_1 + \tau_2) + \rho_1, \]
\[E(T_2) = 2\mu + (\pi_1 + \pi_2) + (\tau_1 + \tau_2) + \rho_2. \]

Inference about the treatment effects

Hypothesis testing

Assume that \(\rho_1 = \rho_2 \). Then the test statistic for testing the null hypothesis on the treatment effects \(H_0 : \tau_1 = \tau_2 \) can be constructed as

\[t_\tau = \frac{\bar{D}_1 - \bar{D}_2}{s_D \sqrt{n/2}}, \]

where \(\bar{D}_k = \frac{1}{n} \sum_{i=1}^{n} D_{ik}, \ k = 1, 2, \) and \(s_D \) is the pooled estimate of the standard deviation.
of the differences:

\[s_D^2 = \frac{1}{2}(s_{D1}^2 + s_{D2}^2). \]

The statistic above follows a t-distribution with df \(2(n - 1)\) under \(H_0\).

Confidence interval

Note that, if \(\rho_1 = \rho_2\),

\[E(\bar{D}_1 - \bar{D}_2) = 2(\tau_1 - \tau_2). \]

An unbiased estimate of \(\tau_1 - \tau_2\) is given by

\[\widehat{\tau_1 - \tau_2} = \frac{1}{2}(\bar{D}_1 - \bar{D}_2). \]

A 100\((1 - \alpha)\)% confidence interval for \(\tau_1 - \tau_2\) is constructed as

\[\frac{1}{2}(\bar{D}_1 - \bar{D}_2) \pm t_{2(n-1),\alpha/2}(\frac{1}{2}s_D)\sqrt{\frac{2}{n}}. \]
Inference about period effect

If there is no carry-over effects, i.e., $\rho_1 = \rho_2 = 0$, the equality of period effects $\pi_1 = \pi_2$ can be tested by the following test statistic

$$t_{\pi} = \frac{\bar{D}_1 + \bar{D}_2}{s_D} \sqrt{\frac{n}{2}},$$

The statistic above follows a t-distribution with df $2(n - 1)$ under the hypothesis that $\pi_1 = \pi_2$.

Example:

The data of the example is summarized as follows:

<table>
<thead>
<tr>
<th>Order</th>
<th>n</th>
<th>Sums</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>sd</td>
</tr>
<tr>
<td>AB</td>
<td>8</td>
<td>7.2625</td>
<td>3.1645</td>
</tr>
<tr>
<td>BA</td>
<td>8</td>
<td>6.1375</td>
<td>2.5309</td>
</tr>
</tbody>
</table>

$$s_D = \sqrt{\frac{1.4904^2 + 1.3575^2}{2}} = 1.4255.$$
The two test statistics are computed as

\[
t_\tau = \frac{1.4875 - (-0.3625)}{1.4255} \sqrt{\frac{8}{2}} = 2.60,
\]

\[
t_\pi = \frac{1.4875 + (-0.3625)}{1.4255} \sqrt{\frac{8}{2}} = 1.58.
\]

The p-value at \(t_\tau \) is 0.021 and at \(t_\pi \) is 0.136.

A 95% confidence interval for \(\tau_1 - \tau_2 \) is constructed as

\[
\frac{1}{2}(1.4875 + 0.3635) \pm 2.145 \left(\frac{1.4255}{2} \right) \sqrt{\frac{2}{8}}
\]

i.e.,

\[
0.925 \pm 0.7644 = [0.161, \quad 1.689].
\]

Issues on carry-over effect

The equality of carry-over effects, \(\rho_1 = \rho_2 \),
can be tested by the statistic
\[t_\rho = \frac{\bar{T}_1 - \bar{T}_2}{s_T} \sqrt{\frac{n}{2}}, \]
where \(\bar{T}_k = \frac{1}{n} \sum_{i=1}^{n} T_{ik}, k = 1, 2, \) and \(s_T \) is the pooled estimate of the standard deviation of the differences:
\[s_T^2 = \frac{1}{2}(s_{T1}^2 + s_{T2}^2). \]
The statistic above follows a \(t \)-distribution with df \(2(n - 1) \) under the equality of \(\rho_1 \) and \(\rho_2 \).

For the example,
\[t_\rho = \frac{7.2625 - 6.1375}{2.8659} \sqrt{\frac{8}{2}} = 0.79, \]
which is non-significant.

Remarks

1. In the case of unequal carry-over effects, \(t_\tau \) does not provide a valid test for the treat-
ment effects, and \(\frac{1}{2}(\bar{D}_1 - \bar{D}_2)\) does not provide an unbiased estimate for \(\tau_1 - \tau_2\).

An unbiased estimate of \(\tau_1 - \tau_2\) can be obtained as

\[
\hat{(\tau_1 - \tau_2)}_{ADJUSTED} = \frac{1}{2}(\bar{D}_1 - \bar{D}_2) + \frac{1}{2}(\bar{T}_1 - \bar{T}_2) = \bar{X}_1 - \bar{Y}_1.
\]

Note that the adjusted unbiased estimate only involves the data obtained in period 1.

2. If carry-over effects are non-zero, though they might be equal, \(t_\pi\) does not provide a valid test for the period effects.

3. The analysis on treatment effect and period effect can also be done either through the ANOVA approach or the linear model approach with Latin square designs.
• **General two period crossover study**

In general, two period crossover study can be done by assigning patients at random to one of the two orders.

The analysis can be done in exactly the same way with the adjustment for unequal sample sizes.

Let the number of patients with order AB be \(n_1\) and that with order BA \(n_2\). The adjustment is as follows.

\[
\begin{align*}
 s^2_D &= \frac{(n_1 - 1)s^2_{D_1} + (n_2 - 1)s^2_{D_2}}{n_1 + n_2 - 2}, \\
 s^2_T &= \frac{(n_1 - 1)s^2_{T_1} + (n_2 - 1)s^2_{T_2}}{n_1 + n_2 - 2},
\end{align*}
\]
\[
t_\tau = \frac{\bar{D}_1 - \bar{D}_2}{s_D} \sqrt{\frac{n_1 n_2}{n_1 + n_2}},
\]
\[
t_\pi = \frac{\bar{D}_1 + \bar{D}_2}{s_D} \sqrt{\frac{n_1 n_2}{n_1 + n_2}},
\]
\[
t_\rho = \frac{\bar{T}_1 - \bar{T}_2}{s_T} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}.
\]

- **Non-parametric analysis of two period crossover study**

In the analysis above, it is implicitly assumed that the responses are normally (or nearly normally) distributed. If the responses are distributed quite differently from the normal distribution, as an alternative, Mann-Whitney-Wilcoxon test can be used to test the various effects.

1. For testing treatment effect, i.e., \(\tau_1 = \tau_2 \),
the Mann-Whitney-Wilcoxon test is applied to the ranks of the samples $D_{i1}, i = 1, \ldots, n_1,$ and $D_{i2}, i = 1, \ldots, n_2.$

2. For testing period effect, i.e., $\pi_1 = \pi_2,$ the Mann-Whitney-Wilcoxon test is applied to the ranks of the samples $D_{i1}, i = 1, \ldots, n_1,$ and $-D_{i2}, i = 1, \ldots, n_2.$

3. For testing carryover effect, i.e., $\rho_1 = \rho_2,$ the Mann-Whitney-Wilcoxon test is applied to the ranks of the samples $T_{i1}, i = 1, \ldots, n_1,$ and $T_{i2}, i = 1, \ldots, n_2.$

Example (cont.)

The ranks of the sums and differences of the two groups of patients (AB and BA) in the example are given in the following table:
Ranks of sums

<table>
<thead>
<tr>
<th>Square</th>
<th>Sum</th>
<th>Rank</th>
<th>Sum</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.9</td>
<td>13</td>
<td>6.8</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>1</td>
<td>3.9</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>7.9</td>
<td>10</td>
<td>9.8</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>9.3</td>
<td>14</td>
<td>2.4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3.6</td>
<td>3</td>
<td>8.8</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>9</td>
<td>4.1</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>11.3</td>
<td>16</td>
<td>6.3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8.3</td>
<td>11</td>
<td>7.0</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td></td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>

Ranks of differences

<table>
<thead>
<tr>
<th>Square</th>
<th>Difference</th>
<th>Rank</th>
<th>Difference</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>11</td>
<td>-1.0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-0.4</td>
<td>7</td>
<td>-0.7</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1.7</td>
<td>12</td>
<td>-1.8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-0.5</td>
<td>6</td>
<td>0.8</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>10</td>
<td>-0.6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2.6</td>
<td>15</td>
<td>2.3</td>
<td>13.5</td>
</tr>
<tr>
<td>7</td>
<td>2.3</td>
<td>13.5</td>
<td>-1.7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3.9</td>
<td>16</td>
<td>-0.2</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>90.5</td>
<td></td>
<td>45.5</td>
<td></td>
</tr>
</tbody>
</table>
The χ^2 statistic for testing $\rho_1 = \rho_2$ is computed as

$$\chi^2 = \frac{12 \times 8 \times 8 \times (77/8 - 59/8)^2}{16^2 \times 17} = 0.89.$$

The value is not significant.

The χ^2 statistic for testing $\tau_1 = \tau_2$ is computed as

$$\chi^2 = \frac{12 \times 8 \times 8 \times (90.5/8 - 45.5/8)^2}{16^2 \times 17} = 5.5836.$$

The p value of the test is 0.018.

The conclusion is consistent with the previous analysis.

Two period crossover study with binary response

If the responses are binary with category values, say good or bad, success or failure, the
data cannot be analyzed in exactly the same way as for quantitative responses.

Let the responses be denoted by + and − for the two categories. The data of a crossover study with two treatments is summarized as follows:

<table>
<thead>
<tr>
<th></th>
<th>Sequence AB</th>
<th></th>
<th>Sequence BA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Period II</td>
<td></td>
<td>Period II</td>
</tr>
<tr>
<td>Period I</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>n_{11}</td>
<td>n_{12}</td>
<td>m_{11}</td>
</tr>
<tr>
<td></td>
<td>n_{21}</td>
<td>n_{22}</td>
<td>m_{21}</td>
</tr>
<tr>
<td>Total</td>
<td>n_{1}</td>
<td>n_{2}</td>
<td>m_{1}</td>
</tr>
</tbody>
</table>

Inference on carryover effect

Let P_1 and P_2 denote the proportions of positive responses in the first and second sequence.

\[
P_1 = \frac{2n_{11} + n_{12} + n_{21}}{2n_{..}},
\]

\[
P_2 = \frac{2m_{11} + m_{12} + m_{21}}{2m_{..}}.
\]
It can be obtained that

\[
\text{Var}(P_1) = \frac{1}{4n^3}[n_..(n_{11} + n_{22}) - (n_{11} - n_{22})^2],
\]

\[
\text{Var}(P_2) = \frac{1}{4m^3}[m_..(m_{11} + m_{22}) - (m_{11} - m_{22})^2].
\]

The test statistic for testing \(\rho_1 = \rho_2 \) is

\[
\chi^2 = \left[|P_1 - P_2| - \frac{1}{4}(\frac{1}{n_..} + \frac{1}{m_..}) \right]^2 \frac{\text{Var}(P_1) + \text{Var}(P_2)}{\text{Var}(P_1) + \text{Var}(P_2)}.
\]

Under the hypothesis of \(\rho_1 = \rho_2 \), the statistic follows an asymptotic \(\chi^2 \)-distribution with 1 degree of freedom.

Inference on treatment effect

If the test for carryover effect is significant, the inference on treatment effect should only be based on the data in period 1. The test
statistic for testing $H_0 : \tau_1 = \tau_2$ is given by

$$Z = \frac{|p_A - p_B| - \frac{1}{2}(\frac{1}{n..} + \frac{1}{m..})}{\sqrt{\bar{p}(1 - \bar{p})} \sqrt{\frac{n..m..}{n.. + m..}}} \sqrt{\frac{n..m..}{n.. + m..}},$$

where

$$p_A = \frac{n_1.}{n..}, \quad p_B = \frac{m_1.}{m..}, \quad \bar{p} = \frac{n_1. + m_1.}{n.. + m..}.$$

The null hypothesis is rejected if $Z > z_{\alpha/2}$ at level α.

If the test for carryover effect is non-significant, or it can be assumed that there is no carryover effect, The test statistic for testing $H_0 : \tau_1 = \tau_2$ is given by

$$Z = \frac{|p'_A - p'_B| - \frac{1}{2}(\frac{1}{n'} + \frac{1}{m'})}{\sqrt{\bar{p}'(1 - \bar{p}')}} \sqrt{\frac{n'm'}{n' + m'}},$$

where

$$p'_A = \frac{n_{12}}{n'}, \quad p'_B = \frac{m_{12}}{m'}, \quad \bar{p} = \frac{n_{12} + m_{12}}{n' + m'}.$$
and \(n' = n_{12} + n_{21}, m' = m_{12} + m_{21} \). The null hypothesis is rejected if \(Z > z_{\alpha/2} \) at level \(\alpha \).

Remark: In the test statistic above, the numbers \(n_{11} \) and \(n_{22} \) are not involved, since they are non-informative.

Analyzing binary variables using indicator functions

Let \(x_{i1}, x_{i2} \) denote the responses of patient \(i \) with sequence AB in period 1 and 2 respectively, where the variables take value 1 if the response is positive and 0 otherwise. Similarly define the notation \(y_{i1}, y_{i2} \) for the responses of patients with sequence BA.
Then,

\[
\begin{align*}
 n_{11} &= \sum x_{i1}x_{i2}, \\
 n_{22} &= \sum (1 - x_{i1})(1 - x_{i2}), \\
 n_{12} &= \sum x_{i1}(1 - x_{i2}), \\
 n_{11} &= \sum (1 - x_{i1})x_{i2}.
\end{align*}
\]

The \(m_{ij} \)'s have the similar expressions in terms of \(y_{i1} \)'s and \(y_{i2} \)'s.

1. Using the indicator functions, the variances \(\text{Var}(P_1) \) and \(\text{Var}(P_2) \) can be easily obtained.

2. Like in the case of quantitative responses, the sums and differences can be defined, and the statistics can be formed in the same way. It results in test statistics slightly different from the ones in this subsection.
§8.3. Crossover study with more than two treatments

In two-period crossover studies, the treatment effect can be analyzed only when the crossover effects of the treatments are equal.

If there are more than two treatments, crossover studies can be designed such that the treatment effects can be analyzed no matter whether or not the crossover effects are equal under the assumption that the effect of any treatment can only carry over to the immediate next period.

- **Special Latin square designs for crossover study**

 The proper designs for crossover studies with more than two treatments are special Latin square designs which have the property:

 Each treatment follows each of others the same number of times.
Latin squares with the above property can be obtained by the following scheme:

– Let the first row of the square be

 \[1, 2, g, 3, g - 1, 4, \cdots\]

– Each subsequent row is obtained from the preceding one by adding 1 to each integer; the integer \(g + 1\) is replaced by 1. Thus the second and third rows are obtained as

 \[2, 3, 1, 4, g, 5, \cdots\]

 \[3, 4, 2, 5, 1, 6, \cdots\]

– The process continues until \(g\) rows are obtained.

When \(g\) is even, the above process assures that each treatment follows each of the others exactly once within the square.

When \(g\) is odd, the mirror image of the square must be used in tandem with the generated
square, then each treatment follows each of the others exactly twice within the pair of squares.

Examples of the special Latin squares:

\(g = 3: \)

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \\
\end{bmatrix}
\quad
\begin{bmatrix}
3 & 2 & 1 \\
1 & 3 & 2 \\
2 & 1 & 3 \\
\end{bmatrix}
\]

\(g = 5: \)

\[
\begin{bmatrix}
1 & 2 & 5 & 3 & 4 \\
2 & 3 & 1 & 4 & 5 \\
3 & 4 & 2 & 5 & 1 \\
4 & 5 & 3 & 1 & 2 \\
5 & 1 & 4 & 2 & 3 \\
\end{bmatrix}
\quad
\begin{bmatrix}
4 & 3 & 5 & 2 & 1 \\
5 & 4 & 1 & 3 & 2 \\
1 & 5 & 2 & 4 & 3 \\
2 & 1 & 3 & 5 & 4 \\
3 & 2 & 4 & 1 & 5 \\
\end{bmatrix}
\]

Randomized squares of the desired property can be obtained from the above squares by first permuting the rows and followed by permuting the numerals.
• Analysis of crossover study with more than two treatments

The analysis of \(q g \times g \) Latin squares for a crossover study with \(g \) treatments and \(g \) periods are described as follows.

Summarizing quantities:

- \(T_i \): sum of all \(qg \) responses to Treatment \(i \);
- \(R_i \): sum of all \(q(g - 1) \) responses in the periods immediately following Treatment \(i \);
- \(F_i \): sum of all \(qg \) responses for those subjects who received Treatment \(i \) in the final period;
- \(P_1 \): sum of all \(qg \) responses in the first period;
- \(G \): sum of all \(qg^2 \) responses in the entire study.
Let τ_i and ρ_i be, respectively, the direct effect and carryover effect of treatment i subject to the constraints $\sum \pi_i = \sum j \tau_j = \sum k \rho_k = 0$.

Unbiased estimates of τ_i and ρ_j:

\[
\hat{\tau}_i = \frac{(g^2-g-1)T_i + gR_i + F_i + P_1 - gG}{qq(g^2-g-2)}.
\]

\[
\hat{\rho}_i = \frac{gT_i + g^2R_i + gF_i + gP_1 - (g+2)G}{qq(g^2-g-2)},
\]

Sum of squares for carryover effects:

\[
CSS = \frac{q(g^2-g-2)}{g} \sum \hat{\rho}_i^2.
\]

Sum of squares for treatment effects (adjusted):

\[
DSS = \frac{qg(g^2-g-2)}{g^2-g-1} \sum \hat{\tau}_i^2.
\]
Residuals sum of squares:

Residuals sum of squares is computed from the ANOVA table below:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>$qg - 1$</td>
<td>Standard</td>
</tr>
<tr>
<td>Periods</td>
<td>$g - 1$</td>
<td>Standard</td>
</tr>
<tr>
<td>Treatments</td>
<td>$g - 1$</td>
<td>Standard</td>
</tr>
<tr>
<td>Carryover</td>
<td>$g - 1$</td>
<td>From formula</td>
</tr>
<tr>
<td>Residuals</td>
<td>$(qg - 3)(g - 1)$</td>
<td>By subtraction</td>
</tr>
<tr>
<td>Total</td>
<td>$qg^2 - 1$</td>
<td>Standard</td>
</tr>
</tbody>
</table>

Note: The standard sums of squares can be computed by using the linear model approach for repeated Latin squares, treating the squares as if they are for a non-crossover study. The sum of squares for treatment is unadjusted.

Inference on carryover effects

The significance of carryover effects is tested
by the statistic

\[F_C = \frac{\text{CSS}/(g - 1)}{\text{RMS}}. \]

The value of the statistic is to be compared with \(F_{g-1,(qg-3)(g-1),\alpha} \) for the test of level \(\alpha \).

Inference on treatment effects

The significance of treatment effects is tested by the statistic

\[F_D = \frac{\text{DSS}/(g - 1)}{\text{RMS}}. \]

Note that the DSS is the adjusted sum of squares for treatment. The value of the statistic is also to be compared with \(F_{g-1,(qg-3)(g-1),\alpha} \) for the test of level \(\alpha \).
Linear model approach:

Let the response of Subject l in period i on Treatment j when Treatment k was given in the preceding period be denoted by X_{ijkl}. It can be expressed as

$$X_{ijkl} = \mu + \pi_i + \tau_j + \rho_k + \nu_l + \epsilon_{ijkl},$$

where when $i = 1$, ρ_k is taken to be ρ_1, in fact, it can be taken as any constant.

The above model can be expressed, for an individual subject, as

$$X = \mu + \sum_{i=2}^{g} \pi_i p_i + \sum_{j=2}^{g} \tau_j t_j + \sum_{k=2}^{qg} \rho_k c_k + \sum_{l=2}^{qg} \nu_l s_l + \epsilon,$$

where the dummy variables are defined as follows:
\[
\begin{align*}
 p_i &= \begin{cases}
 1, & \text{if period } i, \\
 0, & \text{otherwise, } i = 2, \ldots, g;
 \end{cases} \\
 t_j &= \begin{cases}
 1, & \text{if treatment } j, \\
 0, & \text{otherwise, } j = 2, \ldots, g;
 \end{cases} \\
 c_k &= \begin{cases}
 1, & \text{if carryover } k, \\
 0, & \text{otherwise, } k = 2, \ldots, g;
 \end{cases} \\
 s_l &= \begin{cases}
 1, & \text{if subject } l, \\
 0, & \text{otherwise, } l = 2, \ldots, qg.
 \end{cases}
\]

The inferences on the carryover effects and on the treatment effects are then boiled down to the inferences on the corresponding coefficients in the above linear model.

The tests of the overall significance of the effects and multiple comparisons can be carried out in the standard way.
- **An example**

<table>
<thead>
<tr>
<th>Patient</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
<th>Period 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86 (3)</td>
<td>77 (4)</td>
<td>102 (2)</td>
<td>122 (1)</td>
</tr>
<tr>
<td>2</td>
<td>79 (4)</td>
<td>110 (1)</td>
<td>77 (3)</td>
<td>106 (2)</td>
</tr>
<tr>
<td>2</td>
<td>77 (2)</td>
<td>90 (3)</td>
<td>105 (1)</td>
<td>120 (4)</td>
</tr>
<tr>
<td>4</td>
<td>52 (1)</td>
<td>85 (2)</td>
<td>69 (4)</td>
<td>73 (3)</td>
</tr>
<tr>
<td>5</td>
<td>74 (2)</td>
<td>73 (4)</td>
<td>83 (1)</td>
<td>105 (3)</td>
</tr>
<tr>
<td>6</td>
<td>96 (4)</td>
<td>97 (3)</td>
<td>94 (2)</td>
<td>113 (1)</td>
</tr>
<tr>
<td>7</td>
<td>83 (3)</td>
<td>87 (1)</td>
<td>91 (4)</td>
<td>104 (2)</td>
</tr>
<tr>
<td>8</td>
<td>82 (1)</td>
<td>93 (2)</td>
<td>102 (3)</td>
<td>106 (4)</td>
</tr>
<tr>
<td>9</td>
<td>81 (2)</td>
<td>74 (4)</td>
<td>88 (3)</td>
<td>111 (1)</td>
</tr>
<tr>
<td>10</td>
<td>64 (3)</td>
<td>78 (2)</td>
<td>77 (1)</td>
<td>76 (4)</td>
</tr>
<tr>
<td>11</td>
<td>72 (1)</td>
<td>76 (3)</td>
<td>89 (4)</td>
<td>109 (2)</td>
</tr>
<tr>
<td>12</td>
<td>81 (4)</td>
<td>70 (1)</td>
<td>93 (2)</td>
<td>119 (3)</td>
</tr>
<tr>
<td>13</td>
<td>77 (3)</td>
<td>57 (1)</td>
<td>75 (2)</td>
<td>93 (4)</td>
</tr>
<tr>
<td>14</td>
<td>76 (2)</td>
<td>70 (3)</td>
<td>60 (4)</td>
<td>107 (1)</td>
</tr>
<tr>
<td>15</td>
<td>87 (1)</td>
<td>80 (4)</td>
<td>70 (3)</td>
<td>93 (2)</td>
</tr>
<tr>
<td>16</td>
<td>66 (4)</td>
<td>84 (2)</td>
<td>68 (1)</td>
<td>119 (3)</td>
</tr>
<tr>
<td>17</td>
<td>87 (4)</td>
<td>84 (2)</td>
<td>104 (3)</td>
<td>122 (1)</td>
</tr>
<tr>
<td>18</td>
<td>72 (1)</td>
<td>83 (3)</td>
<td>91 (2)</td>
<td>92 (4)</td>
</tr>
<tr>
<td>19</td>
<td>69 (2)</td>
<td>65 (1)</td>
<td>77 (4)</td>
<td>100 (3)</td>
</tr>
<tr>
<td>20</td>
<td>81 (3)</td>
<td>86 (4)</td>
<td>61 (1)</td>
<td>122 (2)</td>
</tr>
</tbody>
</table>

The above table gives plague scores for 20 patients in a four-period crossover study balanced for carryover effects (numbers in parentheses is the treatment number).
The summary data are as follows:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>T_i</th>
<th>R_i</th>
<th>F_i</th>
<th>$\hat{\tau}_i$</th>
<th>$\hat{\rho}_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1723</td>
<td>1372</td>
<td>1851</td>
<td>0.1900</td>
<td>3.6100</td>
</tr>
<tr>
<td>2</td>
<td>1790</td>
<td>1331</td>
<td>1763</td>
<td>2.6150</td>
<td>-0.0900</td>
</tr>
<tr>
<td>3</td>
<td>1764</td>
<td>1362</td>
<td>1625</td>
<td>1.1150</td>
<td>-0.8900</td>
</tr>
<tr>
<td>4</td>
<td>1672</td>
<td>1342</td>
<td>1710</td>
<td>-3.9200</td>
<td>-2.6300</td>
</tr>
</tbody>
</table>

For instance,

$T_1 = 122+110+105+52+83+113+87+82+111+77+72+71+57+107+87+68+122+72+65+61 = 1723.$

$R_1 = 77+120+85+105+91+93+76+76+93+75+80+119+83+77+122 = 1372.$

$F_1 = 86+77+102+122+96+97+94+113+81+74+88+111+76+70+60+107+87+84+104+122 = 1851.$

It is computed that CSS = 259.3650, DSS = 426.9809, RSS = 5584.21.
The two F-statistics are computed as
\[F_C = \frac{259.3650/3}{5584.21/51} = 0.79, \]
\[F_D = \frac{426.9809/3}{5584.21/51} = 1.30. \]

The two F values are not significant.

The R code for implementing the linear model approach for the example are given below:

```r
x11=c(86,77,102,122)
x12=c(79,110,77,106)
x13=c(77,90,105,120)
x14=c(52,85,69,73)
x1=c(x11,x12,x13,x14)
x21=c(74,73,83,105)
x22=c(96,97,94,113)
x23=c(83,87,91,104)
x24=c(82,93,102,106)
x2=c(x21,x22,x23,x24)
x31=c(81,74,88,111)
x32=c(64,78,77,76)
x33=c(72,76,89,109)
x34=c(81,70,93,119)
```
\[x_3 = \text{c}(x_{31}, x_{32}, x_{33}, x_{34}) \]
\[x_{41} = \text{c}(77, 57, 75, 93) \]
\[x_{42} = \text{c}(76, 70, 60, 107) \]
\[x_{43} = \text{c}(87, 80, 70, 93) \]
\[x_{44} = \text{c}(66, 84, 68, 119) \]
\[x_4 = \text{c}(x_{41}, x_{42}, x_{43}, x_{44}) \]
\[x_{51} = \text{c}(87, 84, 104, 122) \]
\[x_{52} = \text{c}(72, 83, 91, 92) \]
\[x_{53} = \text{c}(69, 65, 77, 100) \]
\[x_{54} = \text{c}(81, 86, 61, 122) \]
\[x_5 = \text{c}(x_{51}, x_{52}, x_{53}, x_{54}) \]
\[x = \text{c}(x_1, x_2, x_3, x_4, x_5) \]
\[\text{period} = \text{rep}(\text{c}(1:4), 20) \]
\[\text{subject} = \text{kron}\text{ecker}(\text{c}(1:20), \text{c}(1,1,1,1)) \]
\[\text{tmt} = \text{c}(3, 4, 2, 1, 4, 1, 3, 2, 2, 3, 1, 4, 1, 2, 4, 3, 2, 4, 1, 3, 2, 1, 3, 1, 4, 2, 1, 2, 3, 4, 2, 4, 1, 2, 3, 3, 1, 2, 4, 2, 3, 4, 1, 1, 4, 3, 2, 4, 2, 1, 3, 4, 2, 3, 1, 1, 3, 2, 4, 2, 1, 4, 3, 3, 4, 1, 2) \]
\[\text{carryover} = \text{c}(1, 3, 4, 2, 1, 4, 1, 3, 1, 2, 3, 1, 1, 2, 4, 1, 2, 4, 1, 4, 3, 2, 1, 3, 1, 4, 3, 2, 4, 1, 4, 3, 3, 4, 1, 2) \]
period = factor(period)
subject = factor(subject)
tmt = factor(tmt)
carryover = factor(carryover)
options(contrasts=c("contr.treatment","contr.poly"))

lm.fit = lm(x ~ period+tmt+subject+carryover)

b = lm.fit$coef[5:7]
v = vcov(lm.fit)[5:7,5:7]
F.D = t(b) %*% solve(v) %*% b / 3

b = lm.fit$coef[27:29]
v = vcov(lm.fit)[27:29,27:29]
F.C = t(b) %*% solve(v) %*% b / 3

The \(F.D, F.C\) are the values of the two F-statistics. It produces

\[(F.D, F.C) = (1.2998572, 0.7895844)\]
The command `anova(lm.fit)` produces the following ANOVA table:

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>3</td>
<td>9814.7</td>
<td>3271.6</td>
<td>29.8790</td>
<td>2.725e-11 ***</td>
</tr>
<tr>
<td>tmt</td>
<td>3</td>
<td>397.9</td>
<td>132.6</td>
<td>1.2114</td>
<td>0.315022</td>
</tr>
<tr>
<td>subject</td>
<td>19</td>
<td>5977.2</td>
<td>314.6</td>
<td>2.8731</td>
<td>0.001405 **</td>
</tr>
<tr>
<td>carryover</td>
<td>3</td>
<td>259.4</td>
<td>86.5</td>
<td>0.7896</td>
<td>0.505314</td>
</tr>
<tr>
<td>Residuals</td>
<td>51</td>
<td>5584.2</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Not all the SS are correct in the above table.