1. Let F be a c.d.f. on \mathcal{R}. Show that

 (i) $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$;

 (ii) $F(\infty) = \lim_{x \to \infty} F(x) = 1$;

 (iii) F is nondecreasing, i.e., $F(x) \leq F(y)$ if $x \leq y$;

 (iv) F is right continuous, i.e., $\lim_{y \to x, y>x} F(y) = F(x)$.

2. Let (Ω, \mathcal{F}) be a measurable space. A set function ν on \mathcal{F} is called a signed measure if (a) $\nu(\emptyset) = 0$ where \emptyset is the empty set and (b) for any disjoint subsets $A_i \in \mathcal{F}, i = 1, 2, \ldots, \nu(\bigcup_i A_i) = \sum_i \nu(A_i)$.

 (i) Let μ_1 and μ_2 be two measures on (Ω, \mathcal{F}). If $\mu_1(A) - \mu_2(A)$ is well defined for all $A \in \mathcal{F}$, show that $\mu_1 - \mu_2$ is a signed measure.

 (ii) Suppose that f is a measurable function on $(\Omega, \mathcal{F}, \mu_1)$ whose integral exists. Show that $\nu(A) = \int_A f d\mu_1$, $A \in \mathcal{F}$, is a signed measure on (Ω, \mathcal{F}).