Chapter 3

Unbiased Estimation

Exercise 1. Let X be a sample from $P \in \mathcal{P}$ and θ be a parameter. Show that if both $T_1(X)$ and $T_2(X)$ are UMVUE’s (uniformly minimum variance unbiased estimators) of θ with finite variances, then $T_1(X) = T_2(X)$ a.s. P for any $P \in \mathcal{P}$.

Solution. Since both T_1 and T_2 are unbiased, $T_1 - T_2$ is unbiased for 0. By the necessary and sufficient condition for UMVUE (e.g., Theorem 3.2 in Shao, 2003),

$$E[T_1(T_1 - T_2)] = 0 \quad \text{and} \quad E[T_2(T_1 - T_2)] = 0$$

for any P. Then, for any $P \in \mathcal{P}$,

$$E(T_1 - T_2)^2 = E[T_1(T_1 - T_2)] - E[T_2(T_1 - T_2)] = 0,$$

which implies that $T_1 = T_2$ a.s. P. □

Exercise 2 (#3.1). Let (X_1, \ldots, X_n) be a sample of binary random variables with $P(X_i = 1) = p \in (0, 1)$.

(i) Find the UMVUE of p^m, where m is a positive integer and $m \leq n$.
(ii) Find the UMVUE of $P(X_1 + \cdots + X_m = k)$, where m and k are positive integers and $k \leq m \leq n$.
(iii) Find the UMVUE of $P(X_1 + \cdots + X_{n-1} > X_n)$.

Solution. (i) Let $T = \sum_{i=1}^{n} X_i$. Then T is a complete and sufficient statistic for p. By Lehmann-Scheffé’s theorem (e.g., Theorem 3.1 in Shao, 2003), the UMVUE should be $h_m(T)$ with a Borel h_m satisfying $E[h_m(T)] = p^m$.

We now try to find such a function h_m. Note that T has the binomial distribution with size n and probability p. Hence

$$E[h_m(T)] = \sum_{k=0}^{n} \binom{n}{k} h_m(k)p^k(1-p)^{n-k}.$$
Chapter 3. Unbiased Estimation

Setting $E[h_m(T)] = p^m$, we obtain that

$$
\sum_{k=0}^{n} \binom{n}{k} h_m(k) p^{k-m} (1 - p)^{n-m-(k-m)} = 1
$$

for all p. If $m < k$, $p^{k-m} \to \infty$ as $p \to 0$. Hence, we must have $h_m(k) = 0$ for $k = 0, 1, \ldots, m - 1$. Then

$$
\sum_{k=m}^{n} \binom{n}{k} h_m(k) p^{k-m} (1 - p)^{n-m-(k-m)} = 1
$$

for all p. On the other hand, from the property of a binomial distribution,

$$
\sum_{k=m}^{n} \binom{n-m}{k-m} p^{k-m} (1 - p)^{n-m-(k-m)} = 1
$$

for all p. Hence, $\binom{n}{k} h_m(k) = \binom{n-m}{k-m}$ for $k = m, \ldots, n$. The UMVUE of p^m is

$$
h_m(T) = \begin{cases}
\frac{(n-m)}{(n)} & T = m, \ldots, n \\
0 & T = 0, 1, \ldots, m - 1.
\end{cases}
$$

(ii) Note that

$$
P(X_1 + \cdots + X_m = k) = \binom{m}{k} p^k (1 - p)^{m-k}$$

$$
= \binom{m}{k} p^k \sum_{j=0}^{m-k} \binom{m-k}{j} (-1)^j p^j$$

$$
= \binom{m}{k} \sum_{j=0}^{m-k} \binom{m-k}{j} (-1)^j p^{j+k}.
$$

By the result in part (i), the UMVUE of p^{j+k} is $h_{j+k}(T)$, where the function h_{j+k} is given in part (i) of the solution, $j = 0, 1, \ldots, m - k$. By Corollary 3.1 in Shao (2003), the UMVUE of $P(X_1 + \cdots + X_m = k)$ is

$$
\binom{m}{k} \sum_{j=0}^{m-k} \binom{m-k}{j} (-1)^j h_{j+k}(T).
$$

(iii) Let $S_{n-1} = X_1 + \cdots + X_{n-1}$. Then S_{n-1} and X_n are independent and S_{n-1} has the binomial distribution with size $n - 1$ and probability p.
Hence,

\[P(S_{n-1} > X_n) = P(X_n = 0)P(S_{n-1} > 0) + P(X_n = 1)P(S_{n-1} > 1) \]
\[= P(S_{n-1} > 0) - P(X_n = 1)P(S_{n-1} = 1) \]
\[= 1 - (1 - p)^{n-1} - (n - 1)p^2(1 - p)^{n-2} \]
\[= \sum_{j=1}^{n-1} \binom{n-1}{j}(-1)^{j+1}p^j - (n - 1)\sum_{j=0}^{n-2} \binom{n-2}{j}(-1)^{j}p^{j+2} \]
\[= \sum_{j=1}^{n} c_j p^j, \]

where \(c_1 = n - 1, \ c_n = (-1)^{n+1}(n - 1), \) and

\[c_j = (-1)^{j+1} \left[\binom{n-1}{j} + (n - 1)\binom{n-2}{j-2} \right], \quad j = 2, ..., n - 1. \]

The UMVUE of \(P(S_{n-1} > X_n) \) is \(\sum_{j=1}^{n} c_j h_j(T) \) with \(h_j \) defined in part (i) of the solution.

Exercise 3 (#3.2). Let \((X_1, ..., X_n)\) be a random sample from \(N(\mu, \sigma^2) \) with an unknown \(\mu \in \mathcal{R} \) and a known \(\sigma^2 > 0 \).

(i) Find the UMVUE’s of \(\mu^3 \) and \(\mu^4 \).

(ii) Find the UMVUE’s of \(P(X_1 \leq t) \) and \(\frac{d}{dt}P(X_1 \leq t) \) with a fixed \(t \in \mathcal{R} \).

Solution. (i) Let \(\bar{X} \) be the sample mean, which is complete and sufficient for \(\mu \). Since

\[0 = E(\bar{X} - \mu) = E(\bar{X}^3 - 3\mu\bar{X}^2 + 3\mu^2\bar{X} - \mu^3) \]
\[= E(\bar{X}^3) - 3\mu\sigma^2/n - \mu^3, \]

we obtain that

\[E[\bar{X}^3 - (3\sigma^2/n)\bar{X}] = E(\bar{X}^3) - 3\mu\sigma^2/n = \mu^3 \]

for all \(\mu \). By Lehmann-Scheffé’s theorem, the UMVUE of \(\mu^3 \) is \(X^3 - (3\sigma^2/n)\bar{X} \). Similarly,

\[3\sigma^4 = E(\bar{X} - \mu)^4 \]
\[= E[\bar{X}(\bar{X} - \mu)^3] \]
\[= E[\bar{X}^4 - 3\mu\bar{X}^3 + 3\mu^2\bar{X}^2 - \mu^3\bar{X}] \]
\[= E(\bar{X}^4) - 3\mu(3\mu\sigma^2/n + \mu^3) + 3\mu^2(\sigma^2/n + \mu^2) - \mu^4 \]
\[= E(\bar{X}^4) - 6\mu^2\sigma^2/n - 4\mu^4 \]
\[= E(\bar{X}^4) - (6\sigma^2/n)E(\bar{X}^2 - \sigma^2/n) - 4\mu^4. \]

Hence, the UMVUE of \(\mu^4 \) is \([\bar{X}^4 - (6\sigma^2/n)(\bar{X}^2 - \sigma^2/n) - 3\sigma^4]/4 \).

(ii) Since \(E[P(X_1 \leq t|\bar{X})] = P(X_1 \leq t) \), the UMVUE of \(P(X_1 \leq t) \) is
\(P(X_1 \leq t | \bar{X}) \). From the properties of normal distributions, \((X_1, \bar{X})\) is bivariate normal with mean \((\mu, \mu)\) and covariance matrix

\[
\sigma^2 \begin{pmatrix}
1 & n^{-1} \\
n^{-1} & n^{-1}
\end{pmatrix}.
\]

Consequently, the conditional distribution of \(X_1\) given \(\bar{X}\) is the normal distribution \(N(\bar{X}, (1 - n^{-1})\sigma^2)\). Then, the UMVUE of \(P(X_1 \leq t)\) is

\[
\Phi \left(\frac{t - \bar{X}}{\sigma \sqrt{1 - n^{-1}}} \right),
\]

where \(\Phi\) is the cumulative distribution function of \(N(0, 1)\). By the dominated convergence theorem,

\[
\frac{d}{dt} P(X_1 \leq t) = E \left[\frac{d}{dt} \Phi \left(\frac{t - X}{\sigma \sqrt{1 - n^{-1}}} \right) \right] = E \left[\frac{d}{dt} \Phi \left(\frac{t - \bar{X}}{\sigma \sqrt{1 - n^{-1}}} \right) \right].
\]

Hence, the UMVUE of \(\frac{d}{dt} P(X_1 \leq t)\) is

\[
\frac{d}{dt} \Phi \left(\frac{t - \bar{X}}{\sigma \sqrt{1 - n^{-1}}} \right) = \frac{1}{\sigma \sqrt{1 - n^{-1}}} \Phi' \left(\frac{t - \bar{X}}{\sigma \sqrt{1 - n^{-1}}} \right).
\]

Exercise 4 (#3.4). Let \((X_1, ..., X_m)\) be a random sample from \(N(\mu_x, \sigma_x^2)\) and let \(Y_1, ..., Y_n\) be a random sample from \(N(\mu_y, \sigma_y^2)\). Assume that \(X_i\)'s and \(Y_j\)'s are independent.

(i) Assume that \(\mu_x \in \mathbb{R}, \mu_y \in \mathbb{R}, \sigma_x^2 > 0, \text{ and } \sigma_y^2 > 0\). Find the UMVUE's of \(\mu_x - \mu_y\) and \((\sigma_x/\sigma_y)^r\), where \(r > 0\) and \(r < n\).

(ii) Assume that \(\mu_x \in \mathbb{R}, \mu_y \in \mathbb{R}, \text{ and } \sigma_x^2 = \sigma_y^2 > 0\). Find the UMVUE's of \(\sigma_x^2\) and \((\mu_x - \mu_y)/\sigma_x\).

(iii) Assume that \(\mu_x = \mu_y \in \mathbb{R}, \sigma_x^2 > 0, \sigma_y^2 > 0, \text{ and } \sigma_x^2/\sigma_y^2 = \gamma\) is known. Find the UMVUE of \(\mu_x\).

(iv) Assume that \(\mu_x = \mu_y \in \mathbb{R}, \sigma_x^2 > 0, \text{ and } \sigma_y^2 > 0\). Show that a UMVUE of \(\mu_x\) does not exist.

(v) Assume that \(\mu_x \in \mathbb{R}, \mu_y \in \mathbb{R}, \sigma_x^2 > 0, \text{ and } \sigma_y^2 > 0\). Find the UMVUE of \(P(X_1 \leq Y_1)\).

(vi) Repeat (v) under the assumption that \(\sigma_x = \sigma_y\).

Solution: (i) The complete and sufficient statistic for \((\mu_x, \mu_y, \sigma_x^2, \sigma_y^2)\) is \((\bar{X}, \bar{Y}, S_X^2, S_Y^2)\), where \(\bar{X}\) and \(S_X^2\) are the sample mean and variance based on \(X_i\)'s and \(Y\) and \(S_Y^2\) are the sample mean and variance based on \(Y_i\)'s. Therefore \(\bar{X} - \bar{Y}\) is the UMVUE of \(\mu_x - \mu_y\). A direct calculation shows that

\[
E(S_X^r) = \frac{\sigma_x^r}{\kappa_{m-1,r}}.
\]
where
\[\kappa_{m,r} = \frac{m^r/2 \Gamma\left(\frac{m}{2}\right)}{2^r/2 \Gamma\left(\frac{m+r}{2}\right)}. \]

Hence, the UMVUE of \(\sigma_x^r \) is \(\kappa_{m-1,r}S_X^r \). Similarly, the UMVUE of \(\sigma_y^{-r} \) is \(\kappa_{n-1,-r}S_Y^{-r} \). Since \(S_X \) and \(S_Y \) are independent, the UMVUE of \((\sigma_x/\sigma_y)^r \) is \(\kappa_{m-1,r}\kappa_{n-1,-r}S_X^r S_Y^{-r} \).

(ii) The complete and sufficient statistic for \((\mu, \mu_y, \sigma_x^2) \) is \((\bar{X}, \bar{Y}, S^2) \), where
\[S^2 = \frac{1}{m+n-2} \left[\sum_{i=1}^{m} (X_i - \bar{X})^2 + \sum_{j=1}^{n} (Y_j - \bar{Y})^2 \right]. \]

Since \((m+n-2)S^2/\sigma_x^2 \) has the chi-square distribution \(\chi^2_{m+n-2} \), the UMVUE of \(\sigma_x^2 \) is \(S^2 \) and the UMVUE of \(\sigma_x^{-1} \) is \(\kappa_{m+n-2,-1}S^{-1} \). Since \(\bar{X} - \bar{Y} \) and \(S^2 \) are independent, \(\kappa_{m+n-2,-1}(\bar{X} - \bar{Y})/S \) is the UMVUE of \((\mu_x - \mu_y)/\sigma_x \).

(iii) The joint distribution of \(X_i \)'s and \(Y_j \)'s is from an exponential family with \((m\bar{X} + \gamma n\bar{Y}, \sum_{i=1}^{m} X_i^2 + \gamma \sum_{j=1}^{n} Y_j^2) \) as the complete and sufficient statistic for \((\mu_x, \sigma_x^2) \). Hence, the UMVUE of \(\mu_x \) is \((m\bar{X} + \gamma n\bar{Y})/(m + \gamma n) \) is a UMVUE of \(\mu_x \) when \(\mathcal{P}_\gamma \) is considered as the family of distributions for \((X_1, \ldots, X_m, Y_1, \ldots, Y_n) \). Since \(E(T - T_\gamma) = 0 \) for any \(P \in \mathcal{P}_\gamma \) and \(T \) is a UMVUE, \(E[T(T - T_\gamma)] = 0 \) for any \(P \in \mathcal{P}_\gamma \). Similarly, \(E[T_\gamma(T - T_\gamma)] = 0 \) for any \(P \in \mathcal{P}_\gamma \). Then, \(E(T - T_\gamma)^2 = 0 \) for any \(P \in \mathcal{P}_\gamma \) and, thus, \(T = T_\gamma \) a.s. \(\mathcal{P}_\gamma \). Since a.s. \(\mathcal{P}_\gamma \) implies a.s. \(\mathcal{P} \), \(T = T_\gamma \) a.s. \(\mathcal{P} \) for any \(\gamma > 0 \). This shows that \(T \) depends on \(\gamma = \sigma_x^2/\sigma_y^2 \), which is impossible.

(iv) Since \(U = (\bar{X}, \bar{Y}, S_X^2, S_Y^2) \) is complete and sufficient for \((\mu_x, \mu_y, \sigma_x^2, \sigma_y^2) \), \(P(X_1 \leq Y_1 |U) \) is UMVUE for \(P(X_1 \leq Y_1) \). Note that
\[P(X_1 \leq t, Y_1 \leq v |U = (\bar{x}, \bar{y}, s_x^2, s_y^2)) = P\left(Z \leq \frac{t - \bar{x}}{s_x}, W \leq \frac{v - \bar{y}}{s_y}\right), \]
where
\[Z = (X_1 - \bar{X})/S_X \] and
\[W = (Y_1 - \bar{Y})/S_Y. \] From Example 3.4 in Shao (2003), \(Z \) has Lebesgue density \(f_m(z) \) and \(W \) has Lebesgue density \(f_n(w) \), where
\[f_k(z) = \frac{\sqrt{k} \Gamma\left(\frac{k-1}{2}\right)}{\sqrt{\pi} (k-1) \Gamma\left(\frac{k-2}{2}\right)} \left[1 - \frac{kz^2}{(k-1)^2} \right]^{(k/2)-2} I_{(0, (k-1)/\sqrt{k})}(|z|). \]

Since \(Z \) and \(W \) are independent, the conditional density of \((X_1, Y_1) \) given \(U \) is
\[\frac{1}{S_X} f_m\left(\frac{t - \bar{X}}{S_X}\right) \frac{1}{S_Y} f_n\left(\frac{v - \bar{Y}}{S_Y}\right). \]
Hence, the UMVUE is
\[P(X_1 \leq Y_1 | U) = \frac{1}{S_X S_Y} \int_{-\infty}^{0} \int_{-\infty}^{\infty} f_m \left(\frac{v - \bar{X}}{S_X} \right) f_n \left(\frac{t - v - \bar{Y}}{S_Y} \right) dv. \]

(vi) In this case, \(U = (\bar{X}, \bar{Y}, S^2) \) with \(S^2 \) defined in (ii) is complete and sufficient for \((\mu_x, \mu_y, \sigma_x^2)\). Similar to part (v) of the solution, we have
\[P(X_1 \leq Y_1 | U = u) = P \left(\frac{(X_1 - \bar{X}) - (Y_1 - \bar{Y})}{\sqrt{m + n - 2S}} \leq r \right), \]
where \(r \) is the observed value of \(R = -(\bar{X} - \bar{Y})/(\sqrt{m + n - 2S}) \). If we denote the Lebesgue density of \(T = [(X_1 - \bar{X}) - (Y_1 - \bar{Y})]/(\sqrt{m + n - 2S}) \) by \(f(t) \), then the UMVUE of \(P(X_1 \leq Y_1) \) is \(\int_{-\infty}^{R} f(t) dt \). To determine \(f \), we consider the orthogonal transformation
\[(Z_1, ..., Z_{m+n})^\tau = A(X_1, ..., X_m, Y_1, ..., Y_n)^\tau, \]
where \(A \) is an orthogonal matrix of order \(m + n \) whose first three rows are
\[(m^{-1/2} J_m, 0 J_n), \]
\[(0 J_m, n^{-1/2} J_n), \]
and
\[(2 - m^{-1} - n^{-1})^{-1/2}(1 - m^{-1}, -m^{-1} J_{m-1}, n^{-1} - 1, n^{-1} J_{n-1}), \]
and \(J_k \) denotes a row of 1’s with dimension \(k \). Then \(Z_1 = \sqrt{m} \bar{X}, Z_2 = \sqrt{n} \bar{Y}, Z_3 = (2 - m^{-1} - n^{-1})^{-1}[(X_1 - \bar{X}) - (Y_1 - \bar{Y})], (m + n - 2)S^2 = \sum_{i=3}^{m+n} Z_i^2 \), and \(Z_i, i = 3, ..., m + n \), are independent and identically distributed as \(N(0, \sigma^2_x) \). Note that
\[T = \frac{\sqrt{2 - m^{-1} - n^{-1}} Z_3}{\sqrt{Z_3^2 + Z_4^2 + \cdots + Z_{m+n}^2}}. \]

Then, a direct calculation shows that
\[f(t) = c_{m,n} \left(1 - \frac{t^2}{2 - m^{-1} - n^{-1}} \right)^{(m+n-5)/2} I_{(0,\sqrt{2 - m^{-1} - n^{-1}})}(|t|), \]
where
\[c_{m,n} = \frac{\Gamma \left(\frac{m+n-2}{2} \right)}{\sqrt{\pi} (2 - m^{-1} - n^{-1}) \Gamma \left(\frac{m+n-3}{2} \right)}. \]
Exercise 5 (#3.5). Let \((X_1, \ldots, X_n), n > 2,\) be a random sample from the uniform distribution on the interval \((\theta_1 - \theta_2, \theta_1 + \theta_2),\) where \(\theta_1 \in \mathbb{R}\) and \(\theta_2 > 0.\) Find the UMVUE’s of \(\theta_j, j = 1, 2,\) and \(\theta_1/\theta_2.\)

Solution. Let \(X_{(j)}\) be the \(j\)th order statistic. Then \((X_{(1)}, X_{(n)})\) is complete and sufficient for \((\theta_1, \theta_2).\) Hence, it suffices to find a function of \((X_{(1)}, X_{(n)})\) that is unbiased for the parameter of interest. Let \(Y_i = \left[X_i - (\theta_1 - \theta_2) \right] / (2\theta_2),\) \(i = 1, \ldots, n.\) Then \(Y_i’s\) are independent and identically distributed as the uniform distribution on the interval \((0, 1).\) Let \(Y_{(j)}\) be the \(j\)th order statistic of \(Y_i’s.\) Then,

\[
E(X_{(n)}) = 2\theta_2 E(Y_{(n)}) + \theta_1 - \theta_2
\]

\[
= 2\theta_2 n \int_0^1 y^n dy + \theta_1 - \theta_2
\]

\[
= \frac{2\theta_2 n}{n + 1} + \theta_1 - \theta_2
\]

and

\[
E(X_{(1)}) = 2\theta_2 E(Y_{(1)}) + \theta_1 - \theta_2
\]

\[
= 2\theta_2 n \int_0^1 y(1-y)^{n-1} dy + \theta_1 - \theta_2
\]

\[
= -\frac{2\theta_2 n}{n + 1} + \theta_1 + \theta_2.
\]

Hence, \(E(X_{(n)} + X_{(1)})/2 = \theta_1\) and \(E(X_{(n)} - X_{(1)}) = 2\theta_2 (n - 1)/(n + 1).\) Therefore, the UMVUE’s of \(\theta_1\) and \(\theta_2\) are, respectively, \((X_{(n)} + X_{(1)})/2\) and \((n + 1)(X_{(n)} + X_{(1)})/[2(n - 1)].\) Furthermore,

\[
E\left(\frac{X_{(n)} + X_{(1)}}{X_{(n)} - X_{(1)}} \right) = E\left(\frac{Y_{(n)} + Y_{(1)}}{Y_{(n)} - Y_{(1)}} \right) + \frac{\theta_1 - \theta_2}{\theta_2} E\left(\frac{1}{Y_{(n)} - Y_{(1)}} \right)
\]

\[
= n(n - 1) \int_0^1 \int_0^y (x+y)(y-x)^{n-3} dxdy + \frac{\theta_1 - \theta_2}{\theta_2} n(n - 1) \int_0^1 \int_0^y (y-x)^{n-3} dxdy
\]

\[
= \frac{n}{n - 2} + \frac{\theta_1 - \theta_2}{\theta_2} \frac{n}{n - 2}
\]

\[
= \frac{n}{n - 2} \frac{\theta_1}{\theta_2}.
\]

Hence the UMVUE of \(\theta_1/\theta_2\) is \(n(n - 2)/(n - 2)(X_{(n)} + X_{(1)})/(X_{(n)} - X_{(1)}).\)

Exercise 6 (#3.6). Let \((X_1, \ldots, X_n)\) be a random sample from the exponential distribution on \((a, \infty)\) with scale parameter \(\theta,\) where \(\theta > 0\) and
(i) Find the UMVUE of \(a \) when \(\theta \) is known.
(ii) Find the UMVUE of \(\theta \) when \(a \) is known.
(iii) Find the UMVUE’s of \(\theta \) and \(a \).
(iv) Assume that \(\theta \) is known. Find the UMVUE of \(P(X_1 \geq t) \) and the UMVUE of \(\frac{d}{dt}P(X_1 \geq t) \) for a fixed \(t > a \).
(v) Find the UMVUE of \(P(X_1 \geq t) \) for a fixed \(t > a \).

Solution: (i) When \(\theta \) is known, the smallest order statistic \(X(1) \) is complete and sufficient for \(a \). Since \(EX(1) = a + \theta/n \), \(X(1) - \theta/n \) is the UMVUE of \(a \).

(ii) When \(a \) is known, \(T = \sum_{i=1}^{n} X_i \) is complete and sufficient for \(\theta \). Since \(ET = n(a + \theta) \), \(T/n - a \) is the UMVUE of \(\theta \).

(iii) Note that \((X(1), T - nX(1))\) is complete and sufficient for \((a, \theta)\) and \(2(T - nX(1))/\theta \) has the chi-square distribution \(\chi^2_{2(n-1)} \). Then \(E(T - nX(1)) = (n - 1)\theta \) and the UMVUE of \(\theta \) is \((T - nX(1))/(n - 1) \). Since \(EX(1) = a + \theta/n \), the UMVUE of \(a \) is \(X(1) - (T - nX(1))/(n(n - 1)) \).

(iv) Since \(X(1) \) is complete and sufficient for \(a \), the UMVUE of \(P(X_1 \geq t) \) is \(g(X(1)) \) satisfying

\[
P(X_1 \geq t) = \begin{cases}
 e^{(a-t)/\theta} & t > a \\
 1 & t \leq a
\end{cases}
\]

for any \(a \), which is the same as

\[
\frac{ne^{t/\theta}}{\theta} \int_{a}^{\infty} g(x)e^{-nx/\theta} dx = e^{-(n-1)a/\theta}
\]

for any \(a < t \) and \(g(a) = 1 \) for \(a \geq t \). Differentiating both sides of the above expression with respect to \(a \), we obtain that

\[
ne^{t/\theta}g(a)e^{-na/\theta} = (n-1)e^{-(n-1)a/\theta}.
\]

Hence,

\[
g(x) = \begin{cases}
(1-n^{-1})e^{(x-t)/\theta} & x < t \\
1 & x \geq t
\end{cases}
\]

and the UMVUE of \(P(X_1 > t) \) is \(g(X(1)) \). The UMVUE of \(\frac{d}{dt}P(X_1 \geq t) \) is then \(-\theta^{-1}e^{(a-t)/\theta} \) and is then \(-\theta^{-1}g(X(1)) \).

(v) The complete and sufficient statistic for \((a, \theta)\) is \(U = (X(1), T - nX(1)) \). The UMVUE is \(P(X_1 \geq t | U) \). Let \(Y = T - nX(1) \) and \(A_j = \{X(1) = X_j\} \).
Then \(P(A_j) = n^{-1} \). If \(t < X_{(1)} \), obviously \(P(X_1 \geq t | U) = 1 \). For \(t \geq X_{(1)} \), consider \(U = u = (x_{(1)}, y) \) and
\[
P(X_1 \geq t | U = u) = P \left(\frac{X_1 - X_{(1)}}{Y} \geq \frac{t - x_{(1)}}{y} \bigg| U = u \right)
\]
\[
= P \left(\frac{X_1 - X_{(1)}}{Y} \geq \frac{t - x_{(1)}}{y} \right)
\]
\[
= \sum_{j=1}^{n} P(A_j) P \left(\frac{X_1 - X_{(1)}}{Y} \geq \frac{t - x_{(1)}}{y} \bigg| A_j \right)
\]
\[
= \frac{n - 1}{n} P \left(\frac{X_1 - X_{(1)}}{Y} \geq \frac{t - x_{(1)}}{y} \bigg| A_n \right)
\]
\[
= \frac{n - 1}{n} P \left(\frac{X_1 - X_{(1)}}{ \sum_{i=1}^{n-1} (X_i - X_{(1)}) } \geq \frac{t - x_{(1)}}{y} \bigg| A_n \right)
\]
\[
= \frac{n - 1}{n} \left(1 - \frac{t - x_{(1)}}{y} \right)^{n-2},
\]
where the second equality follows from the fact that \(U \) and \((X_1 - X_{(1)})/Y \) are independent (Basu’s theorem), the fourth equality follows from the fact that the conditional probability given \(A_1 \) is 0 and the conditional probabilities given \(A_j, j = 2, \ldots, n \), are all the same, the fifth equality follows from the fact that \(Y = \sum_{i=1}^{n-1} (X_i - X_{(1)}) \) on the event \(A_n \), and the last equality follows from the fact that conditional on \(A_n \), \(X_i - X_{(1)}, i = 1, \ldots, n-1 \), are independent and identically distributed as the exponential distribution on \((0, \infty)\) with scale parameter \(\theta \) and \((X_1 - X_{(1)})/\sum_{i=1}^{n-1} (X_i - X_{(1)}) \) has the beta distribution with density \((n - 2)(1 - x)^{n-3}I_{(0,1)}(x)\). Therefore, the UMVUE is equal to 1 when \(t < X_{(1)} \) and
\[
\left(1 - \frac{1}{n} \right) \left[1 - \frac{t - X_{(1)}}{ \sum_{i=1}^{n} (X_i - X_{(1)}) } \right]^{n-2}
\]
when \(X_{(1)} \leq t \). \(\blacksquare \)

Exercise 7 (#3.7). Let \((X_1, \ldots, X_n)\) be a random sample from the Pareto distribution with Lebesgue density \(\theta a^\theta x^{-(\theta + 1)}I_{(a,\infty)}(x) \), where \(\theta > 0 \) and \(a > 0 \).

(i) Find the UMVUE of \(\theta \) when \(a \) is known.

(ii) Find the UMVUE of \(a \) when \(\theta \) is known.

(iii) Find the UMVUE’s of \(a \) and \(\theta \).

Solution: (i) The joint Lebesgue density of \(X_1, \ldots, X_n \) is
\[
f(x_1, \ldots, x_n) = \theta^n a^\theta \exp \left\{ -(\theta + 1) \sum_{i=1}^{n} \log x_i \right\} I_{(a,\infty)}(x_{(1)}),
\]
where \(x_{(1)} = \min_{1 \leq i \leq n} x_i \). When \(a \) is known, \(T = \sum_{i=1}^{n} \log X_i \) is complete and sufficient for \(\theta \) and \(T - n \log a \) has the gamma distribution with shape parameter \(n \) and scale parameter \(\theta^{-1} \). Hence, \(ET^{-1} = \theta/(n-1) \) and, thus, \((n-1)/T\) is the UMVUE of \(\theta \).

(ii) When \(\theta \) is known, \(X_{(1)} \) is complete and sufficient for \(a \). Since \(X_{(1)} \) has the Lebesgue density \(n \theta a^{n \theta} x^{-(n \theta + 1)} I_{(a, \infty)}(x) \), \(EX_{(1)} = n \theta a/(n \theta - 1) \).

Therefore, \((1 - n \theta)X_{(1)}/(n \theta)\) is the UMVUE of \(a \).

(iii) When both \(a \) and \(\theta \) are unknown, \((Y, X_{(1)})\) is complete and sufficient for \((a, \theta)\), where \(Y = \sum_i (\log X_i - \log X_{(1)}) \). Also, \(Y \) has the gamma distribution with shape parameter \(n - 1 \) and scale parameter \(\theta^{-1} \) and \(X_{(1)} \) and \(Y \) are independent. Since \(EY^{-1} = \theta/(n - 2) \), \((n - 2)/Y\) is the UMVUE of \(\theta \). Since

\[
E \left\{ \left[1 - \frac{Y}{n(n-1)} \right] X_{(1)} \right\} = \left[1 - \frac{EY}{n(n-1)} \right] EX_{(1)} = \left(1 - \frac{1}{n \theta} \right) \frac{n \theta a}{n \theta - 1} = a,
\]

\(\left[1 - \frac{Y}{n(n-1)} \right] X_{(1)} \) is the UMVUE of \(a \).

Exercise 8 (#3.11). Let \(X \) be a random variable having the negative binomial distribution with

\[
P(X = x) = \binom{x - 1}{r - 1} p^r (1 - p)^{x-r}, \quad x = r, r + 1, \ldots,
\]

where \(p \in (0, 1) \) and \(r \) is a known positive integer.

(i) Find the UMVUE of \(p^t \), where \(t \) is a positive integer and \(t < r \).

(ii) Find the UMVUE of \(\text{Var}(X) \).

(iii) Find the UMVUE of \(\log p \).

Solution. (i) Since \(X \) is complete and sufficient for \(p \), the UMVUE of \(p^t \) is \(h(X) \) with a function \(h \) satisfying \(E[h(X)] = p^t \) for any \(p \), i.e.,

\[
\sum_{x=r}^{\infty} h(x) \binom{x - 1}{r - 1} p^r (1 - p)^{x-r} = p^t
\]

for any \(p \). Let \(q = 1 - p \). Then

\[
\sum_{x=r}^{\infty} h(x) \binom{x - 1}{r - 1} q^x = \frac{q^r}{(1 - q)^{r-t}}
\]

for any \(q \in (0, 1) \). From the negative binomial identity

\[
\sum_{x=j}^{\infty} \binom{x - 1}{j - 1} q^x = \frac{q^j}{(1 - q)^j}
\]
with any positive integer \(j \), we obtain that
\[
\sum_{x=r}^{\infty} h(x) \binom{x-1}{r-1} q^x = \sum_{x=r-t}^{\infty} \binom{x-1}{r-t-1} q^{x+t} = \sum_{x=r}^{\infty} \binom{x-t-1}{r-t-1} q^x
\]
for any \(q \). Comparing the coefficients of \(q^x \), we obtain that
\[
h(x) = \frac{\binom{x-t-1}{r-t-1}}{\binom{x-1}{r-1}}, \quad x = r, r+1, \ldots.
\]

(ii) Note that \(\text{Var}(X) = r(1-p)/p^2 = rq/(1-q)^2 \). The UMVUE of \(\text{Var}(X) \) is \(h(X) \) with \(E[h(X)] = rq/(1-q)^2 \) for any \(q \in (0, 1) \). That is,
\[
\sum_{x=r}^{\infty} h(x) \binom{x-1}{r-1} q^x = \frac{q^r}{(1-q)^r} \text{Var}(X) = r \frac{q^{r+1}}{(1-q)^{r+2}}
\]
for any \(q \). Using the negative binomial identity, this means that
\[
\sum_{x=r}^{\infty} h(x) \binom{x-1}{r-1} q^x = r \sum_{x=r+2}^{\infty} \binom{x-1}{r+1} q^{x-1} = r \sum_{x=r+1}^{\infty} \binom{x}{r+1} q^x
\]
for any \(q \), which yields
\[
h(x) = \begin{cases}
0 & x = r \\
\frac{r(x+1)}{(r-1)} & x = r+1, r+2, \ldots
\end{cases}
\]

(iii) Let \(h(X) \) be the UMVUE of \(\log p = \log(1-q) \). Then, for any \(q \in (0, 1) \),
\[
\sum_{x=r}^{\infty} h(x) \binom{x-1}{r-1} q^x = \frac{q^r}{(1-q)^r} \log(1-q)
\]
\[
= -\sum_{x=r}^{\infty} \binom{x-1}{r-1} q^x \sum_{i=1}^{\infty} \frac{q^i}{i}
\]
\[
= \sum_{x=r+1}^{\infty} \sum_{k=0}^{x-r-1} \binom{r+k-1}{k} \frac{q^x}{k+r-x}.
\]

Hence \(h(r) = 0 \) and
\[
h(x) = \frac{1}{\binom{x-1}{r-1}} \sum_{k=0}^{x-r-1} \binom{r+k-1}{k} \frac{1}{k+r-x}
\]
for \(x = r+1, r+2, \ldots. \) \(\blacksquare \)
Exercise 9 (#3.12). Let \((X_1, ..., X_n)\) be a random sample from the Poisson distribution truncated at 0, i.e., \(P(X_i = x) = (e^\theta - 1)^{-1}e^{\theta x}/x!, \ x = 1, 2, ..., \theta > 0\). Find the UMVUE of \(\theta\) when \(n = 1, 2\).

Solution. Assume \(n = 1\). Then \(X\) is complete and sufficient for \(\theta\) and the UMVUE of \(\theta\) is \(h(X)\) with \(E[h(X)] = \theta\) for any \(\theta\).

On the other hand,

\[
\theta(e^\theta - 1)^2 = \left(\sum_{i=1}^\infty \frac{\theta^i}{i!}\right)^2 = \sum_{i=1}^\infty \sum_{j=1}^\infty \frac{\theta^i \theta^{i+1}}{i! j!} = \sum_{t=3}^\infty \frac{1}{t! (t - 1)!}.
\]

Comparing the coefficient of \(\theta^x\) leads to \(h(2) = 0\) and

\[
h(t) = \sum_{i=0}^{t-2} \frac{1}{i! (t - 1 - i)!} / \sum_{i=0}^{t-1} \frac{1}{i! (t - i)!}
\]

for \(t = 3, 4, ...\).

Exercise 10 (#3.14). Let \(X_1, ..., X_n\) be a random sample from the log-distribution with

\[
P(X_1 = x) = -(1 - p)^x/(x \log p), \ x = 1, 2, ...
\]

\(p \in (0, 1)\). Let \(k\) be a fixed positive integer.

(i) For \(n = 1, 2, 3\), find the UMVUE of \(p^k\).

(ii) For \(n = 1, 2, 3\), find the UMVUE of \(P(X = k)\).

Solution. (i) Let \(\theta = 1 - p\). Then \(p^k = \sum_{r=0}^k \binom{k}{r} (-1)^r \theta^r\). Hence, it suffices to obtain the UMVUE for \(\theta^r\). Note that the distribution of \(X_1\) is from a
Chapter 3. Unbiased Estimation

Power series distribution with \(\gamma(x) = x^{-1}\) and \(e(\theta) = -\log(1 - \theta)\) (see Example 3.5 in Shao, 2003). The statistic \(T = \sum_{i=1}^{n} X_i\) is complete and sufficient for \(\theta\). By the result in Example 3.5 of Shao (2003), the UMVUE of \(\theta^r\) is

\[
\frac{\gamma_n(T - r)}{\gamma_n(T)} I_{\{r, r+1, \ldots\}}(T),
\]

where \(\gamma_n(t)\) is the coefficient of \(\theta^t\) in \((\sum_{y=1}^{\infty} \frac{\theta^y}{y})^n\), i.e., \(\gamma_n(t) = 0\) for \(t < n\) and

\[
\gamma_n(t) = \sum_{y_1 + \ldots + y_n = t - n, y_i \geq 0} \frac{1}{(y_1 + 1) \cdots (y_n + 1)}
\]

for \(t = n, n + 1, \ldots\). When \(n = 1, 2, 3\), \(\gamma_n(t)\) has a simpler form. In fact,

\[
\gamma_1(1) = 0 \quad \text{and} \quad \gamma_1(t) = t^{-1}, \quad t = 2, 3, \ldots;
\]

\[
\gamma_2(1) = \gamma_2(2) = 0 \quad \text{and} \quad \gamma_2(t) = \sum_{l=0}^{t-2} \frac{1}{(l+1)(t-l-1)}, \quad t = 3, 4, \ldots;
\]

\[
\gamma_3(1) = \gamma_3(2) = \gamma_3(3) = 0 \quad \text{and} \quad \gamma_3(t) = \sum_{l_1=0}^{t-3} \sum_{l_2=0}^{t-3} \frac{1}{(l_1 + 1)(l_2 + 1)(t - l_1 - l_2 - 2)}, \quad t = 4, 5, \ldots.
\]

(ii) By Example 3.5 in Shao (2003), the UMVUE of \(P(X_1 = k)\) is

\[
\frac{\gamma_{n-1}(T - k)}{k\gamma_n(T)} I_{\{k, k+1, \ldots\}}(T),
\]

where \(\gamma_n(t)\) is given in the solution of part (i).

Exercise 11 (#3.19). Let \(Y_1, \ldots, Y_n\) be a random sample from the uniform distribution on the interval \((0, \theta)\) with an unknown \(\theta \in (1, \infty)\).

(i) Suppose that we only observe

\[
X_i = \begin{cases}
Y_i & \text{if } Y_i \geq 1 \\
1 & \text{if } Y_i < 1
\end{cases}, \quad i = 1, \ldots, n.
\]

Derive a UMVUE of \(\theta\).

(ii) Suppose that we only observe

\[
X_i = \begin{cases}
Y_i & \text{if } Y_i \leq 1 \\
1 & \text{if } Y_i > 1
\end{cases}, \quad i = 1, \ldots, n.
\]
Derive a UMVUE of the probability $P(Y_1 > 1)$.

Solution. (i) Let m be the Lebesgue measure and δ be the point mass on $\{1\}$. The joint probability density of X_1, \ldots, X_n with respect to $\delta + m$ is (see, e.g., Exercise 16 in Chapter 1) $\theta^{-n}I_{[0, \theta]}(X_{(n)})$, where $X_{(n)} = \max_{1 \leq i \leq n} X_i$. Hence $X_{(n)}$ is complete and sufficient for θ and the UMVUE of θ is $h(X_{(n)})$ satisfying $E[h(X_{(n)})] = \theta$ for all $\theta > 1$. The probability density of $X_{(n)}$ with respect to $\delta + m$ is $\theta^{-n}I_{[1]}(x) + n\theta^{-n}x^{n-1}I_{(1, \theta)}(x)$. Hence

$$E[h(X_{(n)})] = \frac{h(1)}{\theta^n} + \frac{n}{\theta^n} \int_1^{\theta} h(x)x^{n-1}dx.$$

Then

$$\theta^{n+1} = h(1) + n \int_1^{\theta} h(x)x^{n-1}dx$$

for all $\theta > 1$. Letting $\theta \to 1$ we obtain that $h(1) = 1$. Differentiating both sides of the previous expression with respect to θ we obtain that

$$(n + 1)\theta^n = nh(\theta)\theta^{n-1} \quad \theta > 1.$$

Hence $h(x) = (n + 1)x/n$ when $x > 1$.

(ii) The joint probability density of X_1, \ldots, X_n with respect to $\delta + m$ is $\theta^{-r}(1 - \theta)^{n-r}$, where r is the observed value of $R =$ the number of X_i's that are less than 1. Hence, R is complete and sufficient for θ. Note that R has the binomial distribution with size n and probability θ^{-1} and $P(Y_1 > 1) = 1 - \theta^{-1}$. Hence, the UMVUE of $P(Y_1 > 1)$ is $1 - R/n$.

Exercise 12 (#3.22). Let (X_1, \ldots, X_n) be a random sample from $P \in \mathcal{P}$ containing all symmetric distributions with finite means and with Lebesgue densities on \mathcal{R}.

(i) When $n = 1$, show that X_1 is the UMVUE of μ.

(ii) When $n > 1$, show that there is no UMVUE of $\mu = EX_1$.

Solution. (i) Consider the sub-family $\mathcal{P}_1 = \{N(\mu, 1) : \mu \in \mathcal{R}\}$. Then X_1 is complete for $P \in \mathcal{P}_1$. Hence, $E[h(X_1)] = 0$ for any $P \in \mathcal{P}$ implies that $E[h(X_1)] = 0$ for any $P \in \mathcal{P}_1$ and, thus, $h = 0$ a.e. Lebesgue measure. This shows that 0 is the unique estimator of 0 when the family \mathcal{P} is considered. Since $EX_1 = \mu$, X_1 is the unique unbiased estimator of μ and, hence, it is the UMVUE of μ.

(ii) Suppose that T is a UMVUE of μ. Let $\mathcal{P}_1 = \{N(\mu, 1) : \mu \in \mathcal{R}\}$. Since the sample mean \bar{X} is UMVUE when \mathcal{P}_1 is considered, by using the same argument in the solution for Exercise 4(iv), we can show that $T = \bar{X}$ a.s. P for any $P \in \mathcal{P}_1$. Since the Lebesgue measure is dominated by any $P \in \mathcal{P}_1$, we conclude that $T = \bar{X}$ a.e. Lebesgue measure. Let \mathcal{P}_2 be the family given in Exercise 5. Then $(X_{(1)} + X_{(n)})/2$ is the UMVUE when \mathcal{P}_2 is considered, where $X_{(j)}$ is the jth order statistic. Then $\bar{X} = (X_{(1)} + X_{(n)})/2$ a.s. P for any $P \in \mathcal{P}_2$, which is impossible. Hence, there is no UMVUE of μ. □
Exercise 13 (#3.24). Suppose that T is a UMVUE of an unknown parameter θ. Show that T^k is a UMVUE of $E(T^k)$, where k is any positive integer for which $E(T^{2k}) < \infty$.

Solution. Let U be an unbiased estimator of 0. Since T is a UMVUE of θ, $E(TU) = 0$ for any P, which means that TU is an unbiased estimator of 0. Then $E(T^2U) = E[T(TU)] = 0$ if $ET^4 < \infty$. By Theorem 3.2 in Shao (2003), T^2 is a UMVUE of ET^2. Similarly, we can show that T^3 is a UMVUE of ET^3. .

Exercise 14 (#3.27). Let X be a random variable having the Lebesgue density $[(1 - \theta) + \theta/(2\sqrt{x})]I_{(0,1)}(x)$, where $\theta \in [0, 1]$. Show that there is no UMVUE of θ based on an observation X.

Solution. Consider estimators of the form $h(X) = a(X^{-1/2} + b)I_{(c, 1)}(X)$ for some real numbers a and b, and $c \in (0, 1)$. Note that

$$\int_0^1 h(x)dx = a \int_c^1 x^{-1/2}dx + ab \int_c^1 dx = 2a(1 - \sqrt{c}) + ab(1 - c).$$

If $b = -2/(1 + \sqrt{c})$, then $\int_0^1 h(x)dx = 0$ for any a and c. Also,

$$\int_0^1 \frac{h(x)}{2\sqrt{x}}dx = \frac{a}{2} \int_c^1 x^{-1}dx + \frac{ab}{2} \int_c^1 x^{-1/2}dx = -\frac{a}{2} \log c + ab(1 - \sqrt{c}).$$

If $a = [b(1 - \sqrt{c}) - 2^{-1}\log c]^{-1}$, then $\int_0^1 \frac{h(x)}{2\sqrt{x}}dx = 1$ for any b and c. Let $g_c = h$ with $b = -2/(1 + \sqrt{c})$ and $a = [b(1 - \sqrt{c}) - 2^{-1}\log c]^{-1}$, $c \in (0, 1)$. Then

$$E[g_c(X)] = (1 - \theta) \int_0^1 g_c(x)dx + \theta \int_0^1 \frac{g_c(x)}{2\sqrt{x}}dx = \theta$$

for any θ, i.e., $g_c(X)$ is unbiased for θ for any $c \in (0, 1)$. The variance of $g_c(X)$ when $\theta = 0$ is

$$E[g_c(X)]^2 = a^2 \int_c^1 (x^{-1} + b^2 + 2bx^{-1/2})dx$$

$$= a^2 \left[- \log c + b^2(1 - c) + 4b(1 - \sqrt{c})\right]$$

$$= \frac{- \log c + b^2(1 - c) + 4b(1 - \sqrt{c})}{[b(1 - \sqrt{c}) - 2^{-1}\log c]^2},$$

where $b = -2/(1 + \sqrt{c})$. Letting $c \to 0$, we obtain that $b \to -2$ and, thus, $E[g_c(X)]^2 \to 0$. This means that no minimum variance estimator within the class of estimators $g_c(X)$. Hence, there is no UMVUE of θ. ■

Exercise 15 (#3.28). Let X be a random sample with $P(X = -1) = 2p(1 - p)$ and $P(X = k) = p^k(1 - p)^{3-k}$, $k = 0, 1, 2, 3$, where $p \in (0, 1)$.

(i) Determine whether there is a UMVUE of p.

(ii) Determine whether there is a UMVUE of \(p(1 - p) \).

Solution. (i) Suppose that \(f(X) \) is an unbiased estimator of \(p \). Then

\[
p = 2f(-1)p(1-p) + f(0)(1-p)^3 + f(1)p(1-p)^2 + f(2)p^2(1-p) + f(3)p^3
\]

for any \(p \). Letting \(p \to 0 \), we obtain that \(f(0) = 0 \). Letting \(p \to 1 \), we obtain that \(f(3) = 1 \). Then

\[
1 = 2f(-1)(1-p) + f(1)(1-p)^2 + f(2)p(1-p) + p^2
\]

Thus, \(2f(-1) + f(1) = 0, f(2) - 2f(-1) - 2f(1) = 0 \), and \(f(1) - f(2) + 1 = 0 \).

These three equations are not independent; in fact the second equation is a consequence of the first and the last equations. Let \(f(2) = c \). Then \(f(1) = c - 1 \) and \(f(-1) = 1 - c/2 \). Let \(g_c(2) = c, g_c(1) = c - 1, g_c(-1) = 1 - c/2, g_c(0) = 0 \), and \(g_c(3) = 1 \). Then the class of unbiased estimators of \(p \) is \(\{g_c(X) : c \in \mathbb{R} \} \). The variance of \(g_c(X) \) is

\[
E[g_c(X)]^2 - p^2 = 2(1-c/2)^2p(1-p) + (c-1)^2p(1-p)^2 + c^2p^2(1-p) + p^3 - p^2.
\]

Denote the right hand side of the above equation by \(h(c) \). Then

\[
h'(c) = -(2-c)p(1-p) + 2(c-1)p(1-p)^2 + 2cp^2(1-p).
\]

Setting \(h'(c) = 0 \) we obtain that

\[
0 = c - 2 + 2(c-1)(1-p) + 2cp = c - 2 + 2c - 2(1-p).
\]

Hence, the function \(h(c) \) reaches its minimum at \(c = (4 - 2p)/3 \), which depends on \(p \). Therefore, there is no UMVUE of \(p \).

(ii) Suppose that \(f(X) \) is an unbiased estimator of \(p(1-p) \). Then

\[
p(1-p) = 2f(-1)p(1-p) + f(0)(1-p)^3 + f(1)p(1-p)^2
\]

\[
+ f(2)p^2(1-p) + f(3)p^3
\]

for any \(p \). Letting \(p \to 0 \) we obtain that \(f(0) = 0 \). Letting \(p \to 1 \) we obtain that \(f(3) = 0 \). Then

\[
1 = 2f(-1) + f(1)(1-p) + f(2)p
\]

for any \(p \), which implies that \(f(2) = f(1) \) and \(2f(-1) + f(1) = 1 \). Let \(f(-1) = c \). Then \(f(1) = f(2) = 1 - 2c \). Let \(g_c(-1) = c, g_c(0) = g_c(3) = 0 \), and \(g_c(1) = g_c(2) = 1 - 2c \). Then the class of unbiased estimators of \(p(1-p) \) is \(\{g_c(X) : c \in \mathbb{R} \} \). The variance of \(g_c(X) \) is

\[
E[g_c(X)]^2 - p^2 = 2c^2p(1-p) + (1-2c)^2p(1-p)^2
\]

\[
+ (1-2c)^2p^2(1-p) - p^2
\]

\[
= 2c^2p(1-p) + (1-2c)^2p(1-p) - p^2
\]

\[
= [2c^2 + (1-2c)^2]p(1-p) - p^2,
\]
which reaches its minimum at $c = 1/3$ for any p. Thus, the UMVUE of $p(1 - p)$ is $g_{1/3}(X)$.

Exercise 16 (#3.29(a)). Let $(X_1, ..., X_n)$ be a random sample from the exponential distribution with density $\theta^{-1}e^{-(x-a)/\theta}I_{(a,\infty)}(x)$, where $a \leq 0$ and θ is known. Obtain a UMVUE of $p(1 - p)$.

Note. The minimum order statistic, $X_{(1)}$, is sufficient for a but not complete because $a \leq 0$.

Solution. Let $U(X_{(1)})$ be an unbiased estimator of 0. Then $E[U(X_{(1)})] = 0$ implies

$$\int_a^0 U(x)e^{-x/\theta} dx + \int_0^\infty U(x)e^{-x/\theta} dx = 0$$

for all $a \leq 0$. Hence, $U(x) = 0$ a.e. for $x \leq 0$ and $\int_0^\infty U(x)e^{-x/\theta} dx = 0$. Consider

$$h(X_{(1)}) = (bX_{(1)} + c)I_{(-\infty,0)}(X_{(1)})$$

with constants b and c. Then $E[h(X_{(1)})U(X_{(1)})] = 0$ for any a. By Theorem 3.2 in Shao (2003), $h(X_{(1)})$ is a UMVUE of its expectation

$$E[h(X_{(1)})] = \frac{ne^{na/\theta}}{\theta} \int_a^0 (bx + c)e^{-nx/\theta} dx$$

$$= c \left(1 - e^{na/\theta}\right) + ab + \frac{b\theta}{n} \left(1 - e^{na/\theta}\right),$$

which equals a when $b = 1$ and $c = -\theta/n$. Therefore, the UMVUE of a is

$$h(X_{(1)}) = (X_{(1)} - \theta/n)I_{(-\infty,0]}(X_{(1)})$$

Exercise 17 (#3.29(b)). Let $(X_1, ..., X_n)$ be a random sample from the distribution on \mathcal{R} with Lebesgue density $\theta a^\theta x^{-(\theta+1)}I_{(a,\infty)}(x)$, where $a \in (0, 1]$ and θ is known. Obtain a UMVUE of a.

Solution. The minimum order statistic $X_{(1)}$ is sufficient for a and has Lebesgue density $n\theta a^{n\theta}x^{-(n\theta+1)}I_{(a,\infty)}(x)$. Let $U(X_{(1)})$ be an unbiased estimator of 0. Then $E[U(X_{(1)})] = 0$ implies

$$\int_a^1 U(x)x^{-(n\theta+1)} dx + \int_1^\infty U(x)x^{-(n\theta+1)} dx = 0$$

for all $a \in (0, 1]$. Hence, $U(x) = 0$ a.e. for $x \in (0, 1]$ and $\int_1^\infty U(x)x^{-(n\theta+1)} dx = 0$. Let

$$h(X_{(1)}) = cI_{(1,\infty)}(X_{(1)}) + bX_{(1)}I_{(0,1]}(X_{(1)})$$

with some constants b and c. Then

$$E[h(X_{(1)})U(X_{(1)})] = c \int_1^\infty U(x)x^{-(n\theta+1)} dx = 0.$$
By Theorem 3.2 in Shao (2003), \(h(X_{(1)}) \) is a UMVUE of its expectation

\[
E[h(X_{(1)})] = bn\theta a^n \theta \int_a^1 x^{-n\theta} dx + cn\theta a^n \theta \int_1^{\infty} x^{-(n\theta+1)} dx
\]

which equals \(a \) when \(b = 1 - \frac{1}{n\theta} \) and \(c = 1 \). Hence, the UMVUE of \(a \) is

\[h(X_{(1)}) = I_{(1,\infty)}(X_{(1)}) + \left(1 - \frac{1}{n\theta} \right) X_{(1)} I_{(0,1]}(X_{(1)}) . \]

Exercise 18 (#3.30). Let \((X_1, ..., X_n)\) be a random sample from the population in a family \(\mathcal{P} \) as described in Exercise 18 of Chapter 2. Find a UMVUE of \(\theta \).

Solution. Note that \(\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \), where \(\mathcal{P}_1 \) is the family of Poisson distributions with the mean parameter \(\theta \in (0, 1) \) and \(\mathcal{P}_2 \) is the family of binomial distributions with size 1 and probability \(\theta \). The sample mean \(\bar{X} \) is the UMVUE of \(\theta \) when either \(\mathcal{P}_1 \) or \(\mathcal{P}_2 \) is considered as the family of distributions. Hence \(\bar{X} \) is the UMVUE of \(\theta \) when \(\mathcal{P} \) is considered as the family of distributions.

Exercise 19 (#3.33). Find a function of \(\theta \) for which the amount of information is independent of \(\theta \), when \(\mathcal{P}_\theta \) is

(i) the Poisson distribution with unknown mean \(\theta > 0 \);

(ii) the binomial distribution with known size \(r \) and unknown probability \(\theta \in (0, 1) \);

(iii) the gamma distribution with known shape parameter \(\alpha \) and unknown scale parameter \(\theta > 0 \).

Solution. (i) The Fisher information about \(\theta \) is \(I(\theta) = \frac{1}{\theta} \). Let \(\eta = \eta(\theta) \). If the Fisher information about \(\eta \) is

\[
\tilde{I}(\eta) = \left(\frac{d\theta}{d\eta} \right)^2 I(\theta) = \left(\frac{d\theta}{d\eta} \right)^2 \frac{1}{\theta} = c
\]

not depending on \(\theta \), then \(\frac{d\eta}{d\theta} = 1/\sqrt{c\theta} \). Hence, \(\eta(\theta) = 2\sqrt{\theta}/\sqrt{c} \).

(ii) The Fisher information about \(\theta \) is \(I(\theta) = \frac{r}{\theta(1-\theta)} \). Let \(\eta = \eta(\theta) \). If the Fisher information about \(\eta \) is

\[
\tilde{I}(\eta) = \left(\frac{d\theta}{d\eta} \right)^2 I(\theta) = \left(\frac{d\theta}{d\eta} \right)^2 \frac{r}{\theta(1-\theta)} = c
\]

not depending on \(\theta \), then \(\frac{d\eta}{d\theta} = \sqrt{r}/\sqrt{c\theta(1-\theta)} \). Choose \(c = 4r \). Then \(\eta(\theta) = \arcsin(\sqrt{\theta}) \).
(iii) The Fisher information about θ is $I(\theta) = \frac{\alpha}{\theta^2}$. Let $\eta = \eta(\theta)$. If the Fisher information about η is

$$\tilde{I}(\eta) = \left(\frac{d\theta}{d\eta} \right)^2 I(\theta) = \left(\frac{d\theta}{d\eta} \right)^2 \frac{\alpha}{\theta^2} = \alpha,$$

then $\frac{d\eta}{d\theta} = \theta^{-1}$ and, hence, $\eta(\theta) = \log \theta$.

Exercise 20 (#3.34). Let $(X_1, ..., X_n)$ be a random sample from a distribution on \mathcal{R} with the Lebesgue density $\frac{1}{\sigma} f \left(\frac{x-\mu}{\sigma} \right)$, where $f(x) > 0$ is a known Lebesgue density and $f'(x)$ exists for all $x \in \mathcal{R}$, $\mu \in \mathcal{R}$, and $\sigma > 0$. Let $\theta = (\mu, \sigma)$. Show that the Fisher information about θ contained in $X_1, ..., X_n$ is

$$I(\theta) = \frac{n}{\sigma^2} \begin{pmatrix} \int \frac{|f'(x)|^2}{f(x)} dx & \int \frac{f'(x)[xf'(x)+f(x)]}{f(x)} dx \\ \int \frac{f'(x)[xf'(x)+f(x)]}{f(x)} dx & \int \frac{|xf'(x)+f(x)|^2}{f(x)} dx \end{pmatrix},$$

assuming that all integrals are finite.

Solution. Let $g(\mu, \sigma, x) = \log \frac{1}{\sigma} f \left(\frac{x-\mu}{\sigma} \right)$. Then

$$\frac{\partial}{\partial \mu} g(\mu, \sigma, x) = -\frac{f'(x)}{\sigma f \left(\frac{x-\mu}{\sigma} \right)}$$

and

$$\frac{\partial}{\partial \sigma} g(\mu, \sigma, x) = -\frac{(x-\mu)f'(x)}{\sigma f \left(\frac{x-\mu}{\sigma} \right)} - \frac{1}{\sigma}.$$

Then

$$E \left[\frac{\partial}{\partial \mu} g(\mu, \sigma, X_1) \right]^2 = \frac{1}{\sigma^2} \int \left[\frac{f'(x)}{f \left(\frac{x-\mu}{\sigma} \right)} \right]^2 \frac{1}{\sigma} f \left(\frac{x-\mu}{\sigma} \right) dx$$

$$= \frac{1}{\sigma^2} \int \frac{|f'(x)|^2}{f \left(\frac{x-\mu}{\sigma} \right)} d \left(\frac{x}{\sigma} \right)$$

$$= \frac{1}{\sigma^2} \int \frac{|f'(x)|^2}{f(x)} dx,$$

$$E \left[\frac{\partial}{\partial \sigma} g(\mu, \sigma, X_1) \right]^2 = \frac{1}{\sigma^2} \int \left[\frac{x-\mu}{\sigma} f' \left(\frac{x-\mu}{\sigma} \right) + 1 \right] \frac{1}{\sigma} f \left(\frac{x-\mu}{\sigma} \right) dx$$

$$= \frac{1}{\sigma^2} \int \left[\frac{xf'(x)}{f(x)} + 1 \right]^2 f(x) dx$$

$$= \frac{1}{\sigma^2} \int \frac{|xf'(x)+f(x)|^2}{f(x)} dx.$$
and
\[
E \left[\frac{\partial}{\partial \mu} g(\mu, \sigma, X_1) \frac{\partial}{\partial \sigma} g(\mu, \sigma, X_1) \right] = \frac{1}{\sigma^2} \int \frac{f'(x - \mu)}{f(x - \mu)} \left[-\frac{x - \mu}{\sigma} \frac{f'(x - \mu)}{f(x - \mu)} + 1 \right] \frac{1}{\sigma} f \left(\frac{x - \mu}{\sigma} \right) dx
\]
\[
= \int \frac{f'(x) [xf'(x) + f(x)]}{f(x)} dx.
\]

The result follows since
\[
I(\theta) = nE \left[\frac{\partial}{\partial \theta} \log \frac{1}{\sigma} f \left(\frac{X_1 - \mu}{\sigma} \right) \right] \left[\frac{\partial}{\partial \theta} \log \frac{1}{\sigma} f \left(\frac{X_1 - \mu}{\sigma} \right) \right]^T.
\]

Exercise 21 (#3.36). Let \(X \) be a sample having a probability density \(f_{\theta}(x) \) with respect to \(\nu \), where \(\theta \) is a \(k \)-vector of unknown parameters. Let \(T(X) \) be a statistic having a probability density \(g_{\theta}(t) \) with respect to \(\lambda \). Suppose that \(\frac{\partial}{\partial \theta} f_{\theta}(x) \) and \(\frac{\partial}{\partial \theta} g_{\theta}(t) \) exist for any \(x \) and \(t \) and that, on any set \(\{ || \theta || \leq c \} \), there are functions \(u_c(x) \) and \(v_c(t) \) such that \(| \frac{\partial}{\partial \theta} f_{\theta}(x) | \leq u_c(x), | \frac{\partial}{\partial \theta} g_{\theta}(t) | \leq v_c(t), \int u_c(x) d\nu < \infty, \) and \(\int v_c(t) d\lambda < \infty. \) Show that
(i) \(I_X(\theta) - I_T(\theta) \) is nonnegative definite, where \(I_X(\theta) \) is the Fisher information about \(\theta \) contained in \(X \) and \(I_T(\theta) \) is the Fisher information about \(\theta \) contained in \(T \);
(ii) \(I_X(\theta) = I_T(\theta) \) if \(T \) is sufficient for \(\theta \).

Solution. (i) For any event \(T^{-1}(B) \),
\[
\int_{T^{-1}(B)} \frac{\partial}{\partial \theta} \log f_{\theta}(X) dP = \int_{T^{-1}(B)} \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu
\]
\[
= \frac{\partial}{\partial \theta} \int_{T^{-1}(B)} f_{\theta}(x) d\nu
\]
\[
= \frac{\partial}{\partial \theta} P(T^{-1}(B))
\]
\[
= \frac{\partial}{\partial \theta} \int_B g_{\theta}(t) d\lambda
\]
\[
= \int_B \frac{\partial}{\partial \theta} g_{\theta}(t) d\lambda
\]
\[
= \int_B \left[\frac{\partial}{\partial \theta} \log g_{\theta}(t) \right] g_{\theta}(t) d\lambda
\]
\[
= \int_{T^{-1}(B)} \frac{\partial}{\partial \theta} \log g_{\theta}(T) dP,
\]

where the exchange of differentiation and integration is justified by the dominated convergence theorem under the given conditions. This shows
that
\[E \left[\frac{\partial}{\partial \theta} \log f_\theta(X) \right] = \frac{\partial}{\partial \theta} \log g_\theta(T) \quad \text{a.s.} \]

Then
\[
\begin{align*}
E & \left[\frac{\partial}{\partial \theta} \log f_\theta(X) \right] \left[\frac{\partial}{\partial \theta} \log g_\theta(T) \right] \\
& = \mathbb{E} \left\{ \mathbb{E} \left[\frac{\partial}{\partial \theta} \log f_\theta(X) \right] \left[\frac{\partial}{\partial \theta} \log g_\theta(T) \right] \right\} \\
& = \mathbb{E} \left[\frac{\partial}{\partial \theta} \log g_\theta(T) \right] \left[\frac{\partial}{\partial \theta} \log g_\theta(T) \right]^T \\
& = I_T(\theta).
\end{align*}
\]

Then the nonnegative definite matrix
\[
E \left[\frac{\partial}{\partial \theta} \log f_\theta(X) - \frac{\partial}{\partial \theta} \log g_\theta(T) \right] \left[\frac{\partial}{\partial \theta} \log f_\theta(X) - \frac{\partial}{\partial \theta} \log g_\theta(T) \right]^T
\]
is equal to \(I_X(\theta) + I_T(\theta) - 2I_T(\theta) = I_X(\theta) - I_T(\theta) \). Hence \(I_X(\theta) - I_T(\theta) \) is nonnegative definite.

(i) If \(T \) is sufficient, then by the factorization theorem, \(f_\theta(x) = \tilde{g}_\theta(t) h(x) \).

Since \(\frac{\partial}{\partial \theta} \log f_\theta(x) = \frac{\partial}{\partial \theta} \log \tilde{g}_\theta(t) \), the result in part (i) of the solution implies that
\[
\frac{\partial}{\partial \theta} \log \tilde{g}_\theta(T) = \frac{\partial}{\partial \theta} \log g_\theta(T) \quad \text{a.s.}
\]

Therefore, \(I_X(\theta) = I_T(\theta) \).

Exercise 22 (\#3.37). Let \((X_1, ..., X_n)\) be a random sample from the uniform distribution on the interval \((0, \theta)\) with \(\theta > 0 \).

(i) Show that \(\frac{d}{d \theta} \int x f_\theta(x) dx \neq \int x \frac{d}{d \theta} f_\theta(x) dx \), where \(f_\theta \) is the density of \(X_{(n)} \), the largest order statistic.

(ii) Show that the Fisher information inequality does not hold for the UMVUE of \(\theta \).

Solution. (i) Note that \(f_\theta(x) = n \theta^{-n} x^{n-1} I_{(0, \theta)}(x) \). Then
\[
\begin{aligned}
\int x \frac{d}{d \theta} f_\theta(x) dx &= \frac{n}{\theta^n+1} \int_0^\theta x^n dx \\
&= \frac{n^2}{n+1}.
\end{aligned}
\]

On the other hand,
\[
\begin{aligned}
\frac{d}{d \theta} \int x f_\theta(x) dx &= \frac{d}{d \theta} \left(\frac{n}{\theta^n} \int_0^\theta x^n dx \right) \\
&= \frac{d}{d \theta} \left(\frac{n \theta}{n+1} \right) \\
&= \frac{n}{n+1}.
\end{aligned}
\]

(ii) The UMVUE of \(\theta \) is \((n + 1)\overline{X}_{(n)}/n \) with variance \(\theta^2/[n(n+2)] \). On the other hand, the Fisher information is \(I(\theta) = n \theta^{-2} \). Hence \([I(\theta)]^{-1} = \theta^2/n > \theta^2/[n(n+2)]\).
Exercise 23 (#3.39). Let X be an observation with Lebesgue density $(2\theta)^{-1}e^{-|x|/\theta}$ with unknown $\theta > 0$. Find the UMVE’s of the parameters θ, θ^r ($r > 1$), and $(1 + \theta)^{-1}$ and, in each case, determine whether the variance of the UMVE attains the Cramér-Rao lower bound.

Solution. For θ, Cramér-Rao lower bound is θ^2 and $|X|$ is the UMVE of θ with $\text{Var}(|X|) = \theta^2$, which attains the lower bound.

For θ^r, Cramér-Rao lower bound is $r^2\theta^{2r}$. Since $E[|X|^r/\Gamma(r+1)] = \theta^r$, $|X|^r/\Gamma(r+1)$ is the UMVE of θ^r with

$$\text{Var}\left(\frac{|X|^r}{\Gamma(r+1)}\right) = \theta^{2r} \left[\frac{\Gamma(2r+1)}{\Gamma(r+1)\Gamma(r+1)} - 1\right] > r^2\theta^{2r}$$

when $r > 1$.

For $(1+\theta)^{-1}$, Cramér-Rao lower bound is $\theta^2/(1+\theta)^4$. Since $E(e^{-|X|}) = (1+\theta)^{-1}$, $e^{-|X|}$ is the UMVE of $(1 + \theta)^{-1}$ with

$$\text{Var}(e^{-|X|}) = \frac{1}{1+2\theta} - \frac{1}{(1+\theta)^2} > \frac{\theta^2}{(1+\theta)^4}.$$

Exercise 24 (#3.42). Let (X_1, \ldots, X_n) be a random sample from $N(\mu, \sigma^2)$ with an unknown $\mu \in \mathcal{R}$ and a known $\sigma^2 > 0$. Find the UMVE of $e^{t\mu}$ with a fixed $t \neq 0$ and show that the variance of the UMVE is larger than the Cramér-Rao lower bound but the ratio of the variance of the UMVE over the Cramér-Rao lower bound converges to 1 as $n \to \infty$.

Solution. The sample mean \bar{X} is complete and sufficient for μ. Since

$$E(e^{t\bar{X}}) = e^{t\mu t + \sigma^2 t^2/(2n)},$$

the UMVE of $e^{t\mu}$ is $T(X) = e^{-\sigma^2 t^2/(2n)} + t\bar{X}$.

The Fisher information $I(\mu) = n/\sigma^2$. Then the Cramér-Rao lower bound is $\left(\frac{d}{d\mu}e^{t\mu}\right)^2 / I(\mu) = \sigma^2 t^2 e^{2t\mu}/n$. On the other hand,

$$\text{Var}(T) = e^{-\sigma^2 t^2/n} E[e^{2t\bar{X}} - e^{2t\mu}] = \left(e^{\sigma^2 t^2/n} - 1\right) e^{2t\mu} > \frac{\sigma^2 t^2 e^{2t\mu}}{n},$$

the Cramér-Rao lower bound. The ratio of the variance of the UMVE over the Cramér-Rao lower bound is $(e^{\sigma^2 t^2/n} - 1)/\left(\sigma^2 t^2/n\right)$, which converges to 1 as $n \to \infty$, since $\lim_{x \to 0}(e^x - 1)/x = 1$.

Exercise 25 (#3.46, #3.47). Let X_1, X_2, \ldots be independent and identically distributed random variables, m be a positive integer, and $h(x_1, \ldots, x_m)$ be a function on \mathcal{R}^m such that $E[h(X_1, \ldots, X_m)]^2 < \infty$ and h is symmetric in its m arguments. A U-statistic with kernel h (of order m) is defined as

$$U_n = \binom{n}{m}^{-1} \sum_{1 \leq i_1 < \cdots < i_m \leq n} h(X_{i_1}, \ldots, X_{i_m}),$$
where $\sum_{1 \leq i_1 < \cdots < i_m \leq n}$ denotes the summation over the $\binom{n}{m}$ combinations of m distinct elements $\{i_1, \ldots, i_m\}$ from $\{1, \ldots, n\}$. For $k = 1, \ldots, m$, define $h_k(x_1, \ldots, x_k) = E[h(x_1, \ldots, x_k, X_{k+1}, \ldots, X_m)]$ and $\zeta_k = \text{Var}(h_k(X_1, \ldots, X_k))$. Show that

(i) $\zeta_1 \leq \zeta_2 \leq \cdots \leq \zeta_m$;
(ii) $(n + 1)\text{Var}(U_{n+1}) \leq n\text{Var}(U_n)$ for any $n \geq m$;
(iii) if $\zeta_j = 0$ for $j < k$ and $\zeta_k > 0$, where $1 \leq k \leq m$, then
\[
\text{Var}(U_n) = \frac{k! \binom{m}{k}^2 \zeta_k}{n^k} + O\left(\frac{1}{n^{k+1}}\right);
\]
(iv) $m^2 \zeta_1 \leq n\text{Var}(U_n) \leq m\zeta_m$ for any $n \geq m$.

Solution. (i) For any $k = 1, \ldots, m - 1$, let $W = h_{k+1}(X_1, \ldots, X_k, X_{k+1})$ and $Y = (X_1, \ldots, X_k)$. Then $\zeta_{k+1} = \text{Var}(W)$ and $\zeta_k = \text{Var}(E(W|Y))$, since
\[
E(W|Y) = E[h_{k+1}(X_1, \ldots, X_k, X_{k+1})|X_1, \ldots, X_k] = h_k(X_1, \ldots, X_k).
\]
The result follows from
\[
\text{Var}(W) = E\{E[(W - EW)^2|Y]\} \geq E\{[E(W|Y) - EW]^2\} = \text{Var}(E(W|Y)),
\]
where the inequality follows from Jensen’s inequality for conditional expectations and the equality follows from $EW = E[E(W|Y)]$.

(ii) We use induction. The result is obvious when $m = 1$, since U is an average of independent and identically distributed random variables when $m = 1$. Assume that the result holds for any U-statistic with a kernel of order $m - 1$. From Hoeffding’s representation (e.g., Serfling, 1980, p. 178),
\[
U_n - EU_n = W_n + S_n,
\]
where W_n is a U-statistic with a kernel of order $m - 1$, S_n is a U-statistic with variance $\binom{n}{m}^{-1} \eta_m$, η_m is a constant not depending on n, and $\text{Var}(U_n) = \text{Var}(W_n) + \text{Var}(S_n)$. By the induction assumption, $(n + 1)\text{Var}(W_{n+1}) \leq n\text{Var}(W_n)$. Then, for any $n \geq m$,
\[
n\text{Var}(U_n) = n\text{Var}(W_n) + n\text{Var}(S_n)
= n\text{Var}(W_n) + n\binom{n}{m}^{-1} \eta_m
\geq (n + 1)\text{Var}(W_{n+1}) + \frac{m! \eta_m}{(n - 1)(n - 2) \cdots (n - m + 1)}
\geq (n + 1)\text{Var}(W_{n+1}) + \frac{(n + 1)(n + 1)}{n(n - 1) \cdots (n - m + 2)} \eta_m
= (n + 1)\text{Var}(W_{n+1}) + (n + 1)\binom{n}{m}^{-1} \eta_m
= (n + 1)\text{Var}(U_{n+1}).
(iii) From Hoeffding’s theorem (e.g., Theorem 3.4 in Shao, 2003),

\[
\text{Var}(U_n) = \sum_{l=1}^{m} \frac{(m)}{l} \frac{(n-m)}{m-l} \zeta_l.
\]

For any \(l = 1, ..., m,\)

\[
\frac{(m)}{l} \frac{(n-m)}{m-l} = l! \left(\frac{m}{l} \right)^2 \frac{(n-m)(n-m-1) \cdots [n-m-(m-l-1)]}{n(n-1) \cdots [n-(m-1)]}
\]

\[
= l! \left(\frac{m}{l} \right)^2 \left[\frac{1}{n^l} + O \left(\frac{1}{n^{l+1}} \right) \right]
\]

\[
= O \left(\frac{1}{n^l} \right).
\]

If \(\zeta_j = 0\) for \(j < k\) and \(\zeta_k > 0,\) where \(1 \leq k \leq m,\) then

\[
\text{Var}(U_n) = \sum_{l=k}^{m} \frac{(m)}{l} \frac{(n-m)}{m-l} \zeta_l
\]

\[
= \frac{(m)}{k} \frac{(n-m)}{m-k} \zeta_k + \sum_{l=k+1}^{m} \frac{(m)}{l} \frac{(n-m)}{m-l} \zeta_l
\]

\[
= k! \left(\frac{m}{k} \right)^2 \zeta_k + \sum_{l=k+1}^{m} O \left(\frac{1}{n^{l+1}} \right)
\]

\[
= k! \left(\frac{m}{k} \right)^2 \zeta_k + O \left(\frac{1}{n^{k+1}} \right).
\]

(iv) From the result in (ii), \(n \text{Var}(U_n)\) is nonincreasing in \(n.\) Hence \(n \text{Var}(U_n) \leq m \text{Var}(U_m) = m \zeta_m\) for any \(n \geq m.\) Also, \(\lim_n [n \text{Var}(U_n)] \leq n \text{Var}(U_n)\) for any \(n \geq m.\) If \(\zeta_1 > 0,\) from the result in (iii), \(\lim_n [n \text{Var}(U_n)] = m^2 \zeta_1.\) Hence, \(m^2 \zeta_1 \leq n \text{Var}(U_n)\) for any \(n \geq m,\) which obviously also holds if \(\zeta_1 = 0.\)

Exercise 26 (#3.53). Let \(h(x_1, x_2, x_3) = I_{(-\infty, 0)}(x_1 + x_2 + x_3).\) Find \(h_k\) and \(\zeta_k,\) \(k = 1, 2, 3,\) for the U-statistic with kernel \(h\) based on independent random variables \(X_1, X_2, ...\) with a common cumulative distribution function \(F.\)

Solution. Let \(G * H\) denote the convolution of the two cumulative distribution functions \(G\) and \(H.\) Then

\[
h_1(x_1) = E[I_{(-\infty, 0)}(x_1 + X_2 + X_3)] = F * F(-x_1),
\]

\[
h_2(x_1, x_2) = E[I_{(-\infty, 0)}(x_1 + x_2 + X_3)] = F(-x_1 - x_2),
\]
Chapter 3. Unbiased Estimation

\[h_3(x_1, x_2, x_3) = I_{(-\infty, 0)}(x_1 + x_2 + x_3), \]
\[\zeta_1 = \text{Var}(F \ast F(-X_1)), \]
\[\zeta_2 = \text{Var}(F(-X_1 - X_2)), \]

and
\[\zeta_3 = F \ast F \ast F(0)[1 - F \ast F \ast F(0)]. \]

Exercise 27 (#3.54). Let \(X_1, \ldots, X_n \) be a random sample of random variables having finite \(EX_1^2 \) and \(EX_1^{-2} \). Let \(\mu = EX_1 \) and \(\bar{\mu} = E X_1^{-1} \). Find a U-statistic that is an unbiased estimator of \(\mu \bar{\mu} \) and derive its variance and asymptotic distribution.

Solution. Consider \(h(x_1, x_2) = (\frac{x_1}{x_2} + \frac{x_2}{x_1})/2 \). Then the U-statistic
\[U_n = \frac{1}{n(n-1)} \sum_{1 \leq i < j \leq n} \left(\frac{X_i}{X_j} + \frac{X_j}{X_i} \right) \]
is unbiased for \(E[h(X_1, X_2)] = \mu \bar{\mu} \). Define \(h_1(x) = (x \mu + x^{-1} \mu)/2 \). Then
\[\zeta_1 = \text{Var}(h(X_1)) = \frac{\bar{\mu}^2 V(X_1) + \mu^2 \text{Var}(X_1^{-1}) + 2 \mu \bar{\mu}(1 - \mu \bar{\mu})}{4}. \]

By Theorem 3.5 in Shao (2003),
\[\sqrt{n}(U_n - \mu \bar{\mu}) \rightarrow_d N(0, 4\zeta_1). \]

Using the formula for the variance of U-statistics given in the solution of the previous exercise, we obtain the variance of \(U_n \) as \([4(n-2)\zeta_1 + 2\zeta_2]/[n(n-1)] \), where \(\zeta_2 = \text{Var}(h(X_1, X_2)) \).

Exercise 28 (#3.58). Suppose that
\[X_{ij} = \alpha_i + \theta t_{ij} + \varepsilon_{ij}, \quad i = 1, \ldots, a, \quad j = 1, \ldots, b, \]
where \(\alpha_i \) and \(\theta \) are unknown parameters, \(t_{ij} \) are known constants, and \(\varepsilon_{ij} \) are independent and identically distributed random variables with mean 0. Find explicit forms for the least squares estimators (LSE’s) of \(\theta, \alpha_i, \) \(i = 1, \ldots, a \).

Solution. Write the model in the form of \(X = Z \beta + \varepsilon \), where
\[X = (X_{11}, \ldots, X_{1b}, \ldots, X_{a1}, \ldots, X_{ab}), \]
\[\beta = (\alpha_1, \ldots, \alpha_a, \theta), \]
and
\[\varepsilon = (\varepsilon_{11}, \ldots, \varepsilon_{1b}, \ldots, \varepsilon_{a1}, \ldots, \varepsilon_{ab}). \]
Then the design matrix Z is

$$Z = \begin{pmatrix} J_b & 0 & 0 & t_1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & J_b & t_a \end{pmatrix},$$

where $t_i = (t_{i1}, \ldots, t_{ib})$ and J_b is the b-vector of 1's. Solving the normal equation $(Z^t au Z) \hat{\beta} = Z^t X$, we obtain the LSE's

$$\hat{\theta} = \frac{\sum_{i=1}^a \sum_{j=1}^b t_{ij} X_{ij} - b \sum_i \bar{t}_i \bar{X}_i}{\sum_{j=1}^b (t_{ij} - \bar{t}_i)^2},$$

where $\bar{t}_i = \frac{1}{b} \sum_{j=1}^b t_{ij}$, $\bar{X}_i = \frac{1}{b} \sum_{j=1}^b X_{ij}$, and

$$\hat{\alpha}_i = \bar{X}_i - \hat{\theta} \bar{t}_i, \quad i = 1, \ldots, a.$$

Exercise 29 (#3.59). Consider the polynomial model

$$X_i = \beta_0 + \beta_1 t_i + \beta_2 t_i^2 + \beta_3 t_i^3 + \varepsilon_i, \quad i = 1, \ldots, n,$$

where ε_i's are independent and identically distributed random variables with mean 0. Suppose that $n = 12$, $t_i = -1$, $i = 1, \ldots, 4$, $t_i = 0$, $i = 5, \ldots, 8$, and $t_i = 1$, $i = 9, \ldots, 12$. Show whether the following parameters are estimable (i.e., they can be unbiasedly estimated): $\beta_0 + \beta_2$, β_1, $\beta_0 - \beta_1$, $\beta_1 + \beta_3$, and $\beta_0 + \beta_1 + \beta_2 + \beta_3$.

Solution. Let $X = (X_1, \ldots, X_{12})$, $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_{12})$, and $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$. Then $X = Z \beta + \varepsilon$ with

$$Z^\tau = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

and

$$Z^\tau Z = \begin{pmatrix} 12 & 0 & 8 & 0 \\ 0 & 8 & 0 & 8 \\ 8 & 0 & 8 & 0 \\ 0 & 8 & 0 & 8 \end{pmatrix}.$$

From the theory of linear models (e.g., Theorem 3.6 in Shao, 2003), a parameter $l^\tau \beta$ with a known vector l is estimable if and only if $l \in \mathcal{R}(Z^\tau Z)$. Note that $\beta_0 + \beta_2 = l^\tau \beta$ with $l = (1, 0, 1, 0)$, which is the third row of $Z^\tau Z$ divided by 8. Hence $\beta_0 + \beta_2$ is estimable. Similarly, $\beta_1 + \beta_3 = l^\tau \beta$...
with \(l = (0, 1, 0, 1) \), which is the second row of \(Z^\top Z \) divided by 8 and, hence, \(\beta_1 + \beta_3 \) is estimable. Then \(\beta_0 + \beta_1 + \beta_2 + \beta_3 \) is estimable, since any linear combination of estimable functions is estimable. We now show that \(\beta_0 - \beta_1 = l^\top \beta \) with \(l = (1, -1, 0, 0) \) is not estimable. If \(\beta_0 - \beta_1 \) is estimable, then there is \(c = (c_1, \ldots, c_4) \) such that \(l = Z^\top Z c \), i.e.,

\[
\begin{align*}
12c_1 + 8c_3 &= 1 \\
8c_2 + 8c_4 &= -1 \\
8c_1 + 8c_3 &= 0 \\
8c_2 + 8c_4 &= 0,
\end{align*}
\]

where the second and the last equations have no solution. Similarly, the parameter \(\beta_1 \) is not estimable, since \(8c_2 + 8c_4 = 1 \) and \(8c_2 + 8c_4 = 0 \) cannot hold at the same time.

Exercise 30 (#3.60). Consider the one-way ANOVA model

\[
X_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad j = 1, \ldots, n_i, i = 1, \ldots, m,
\]

where \(\mu \) and \(\alpha_i \) are unknown parameters and \(\varepsilon_{ij} \) are independent and identically distributed random variables with mean 0. Let

\[
X = (X_{11}, \ldots, X_{1n_1}, \ldots, X_{m1}, \ldots, X_{mn_m}),
\]

\[
\varepsilon = (\varepsilon_{11}, \ldots, \varepsilon_{1n_1}, \ldots, \varepsilon_{m1}, \ldots, \varepsilon_{mn_m}),
\]

and \(\beta = (\mu, \alpha_1, \ldots, \alpha_m) \). Find the matrix \(Z \) in the linear model \(X = Z\beta + \varepsilon \), the matrix \(Z^\top Z \), and the form of \(l \) for estimable \(l^\top \beta \).

Solution. Let \(n = n_1 + \cdots + n_m \) and \(J_a \) be the \(a \)-vector of 1’s. Then

\[
Z = \begin{pmatrix}
J_{n_1} & J_{n_1} & 0 & \cdots & 0 \\
J_{n_2} & 0 & J_{n_2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
J_{n_m} & 0 & 0 & \cdots & J_{n_m}
\end{pmatrix}
\]

and

\[
Z^\top Z = \begin{pmatrix}
n & n_1 & n_2 & \cdots & n_m \\
n_1 & n_1 & 0 & \cdots & 0 \\
n_2 & 0 & n_2 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
n_m & 0 & 0 & \cdots & n_m
\end{pmatrix}.
\]

Note that \(l^\top \beta \) is estimable if and only if \(l \in \mathcal{R}(Z^\top Z) \), the linear space generated by the rows of \(Z^\top Z \). We now show that \(l^\top \beta \) is estimable if and only if \(l_0 = l_1 + \cdots + l_m \) for \(l = (l_0, l_1, \ldots, l_m) \in \mathcal{R}^{m+1} \).
If \(l \in \mathcal{R}(Z^\tau Z) \), then there is a \(c = (c_0, c_1, \ldots, c_m) \in \mathcal{R}^{m+1} \) such that
\[
nc_0 + n_1 c_1 + \cdots + n_m c_m = l_0
\]
\[
n_1 c_0 + n_1 c_1 = l_1
\]
..............
\[
n_m c_0 + n_m c_m = l_m
\]
holds. Then \(l_0 = l_1 + \cdots + l_m \). On the other hand, if \(l_0 = l_1 + \cdots + l_m \), then the previous \(m+1 \) equations with \(c_0, c_1, \ldots, c_m \) considered as variables have infinitely many solutions. Hence \(l \in \mathcal{R}(Z^\tau Z) \).

Exercise 31 (#3.61). Consider the two-way balanced ANOVA model
\[
X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \quad i = 1, \ldots, a, j = 1, \ldots, b, k = 1, \ldots, c,
\]
where \(a, b, \) and \(c \) are some positive integers, \(\varepsilon_{ijk} \)'s are independent and identically distributed random variables with mean 0, and \(\mu, \alpha_i, \beta_j, \) and \(\gamma_{ij} \)'s are unknown parameters. Let \(X \) be the vector of \(X_{ijk} \)'s, \(\varepsilon \) be the vector of \(\varepsilon_{ijk} \)'s, and \(\beta = (\mu, \alpha_1, \ldots, \alpha_a, \beta_1, \ldots, \beta_b, \gamma_{11}, \ldots, \gamma_{1b}, \ldots, \gamma_{a1}, \ldots, \gamma_{ab}) \).

(i) Obtain the design matrix \(Z \) in the model \(X = Z\beta + \varepsilon \) and show that the rank of \(Z \) is \(ab \).

(ii) Find the form of estimable \(l^\tau \beta, l \in \mathcal{R}^{1+a+b+ab} \).

(iii) Obtain an LSE of \(\beta \).

Solution. (i) Let \(J_t \) be the \(t \)-vector of 1’s, \(I_t \) be the identity matrix of order \(t \), \(A \) be the \(ab \times b \) block diagonal matrix whose \(j \)th diagonal block is \(J_a, j = 1, \ldots, b, \)
\[
B = (I_b I_b \cdots I_b),
\]
and
\[
\Lambda = (J_{ab} A B^\tau I_{ab}),
\]
which is an \(ab \times (1+a+b+ab) \) matrix. Then \(Z \) is the \((1+a+b+ab) \times abc \) matrix whose transpose is
\[
Z^\tau = (A^\tau A^\tau \cdots A^\tau)
\]
and
\[
Z^\tau Z = c\Lambda^\tau \Lambda = c \begin{pmatrix} \Lambda_0^\tau \Lambda_0 & \Lambda_0^\tau \\ \Lambda_0 & I_{ab} \end{pmatrix},
\]
where \(\Lambda_0 = (J_{ab} A B^\tau) \). Clearly, the last \(ab \) rows of \(Z^\tau Z \) are linearly independent. Hence the rank of \(Z \), which is the same as the rank of \(Z^\tau Z \), is no smaller than \(ab \). On the other hand, the rank of \(\Lambda \) is no larger than \(ab \) and, hence, the rank of \(Z^\tau Z \) is no larger than \(ab \). Thus, the rank of \(Z \) is \(ab \).

(ii) A function \(l^\tau \beta \) with \(l \in \mathcal{R}^{1+a+b+ab} \) is estimable if and only if \(l \) is a linear combination of the rows of \(Z^\tau Z \). From the discussion in part (i)
of the solution, we know that \(l'\beta \) is estimable if and only if \(l \) is a linear combination of the rows in the matrix \((A_0^\top I_{ab})\).

(iii) Any solution of \(Z\tau Z\beta = Z\tau X \) is an LSE of \(\beta \). A direct calculation shows that an LSE of \(\beta \) is \((\hat{\mu}, \hat{\alpha}_1, ..., \hat{\alpha}_a, \hat{\beta}_1, ..., \hat{\beta}_b, \hat{\gamma}_{11}, ..., \hat{\gamma}_{1b}, ..., \hat{\gamma}_{a1}, ..., \hat{\gamma}_{ab})\), where \(\hat{\mu} = X_i, ..., \hat{\alpha}_i = X_i - X, ..., \hat{\beta}_j = X_j - X, ..., \hat{\gamma}_{ij} = X_{ij} - X_i - X_j + X \), and a dot is used to denote averaging over the indicated subscript.

\[\text{Exercise 32 (#3.63).} \]
Assume that \(X \) is a random \(n \)-vector from the multivariate normal distribution \(N_n(Z\beta, \sigma^2 I_n) \), where \(Z \) is an \(n \times p \) known matrix of rank \(r \leq p < n \), \(\beta \) is a \(p \)-vector of unknown parameters, \(I_n \) is the identity matrix of order \(n \), and \(\sigma^2 > 0 \) is unknown. Find the UMVUE’s of \((l'\beta)^2, \frac{l'\beta}{\sigma}, \frac{(l'\beta)^2}{\sigma^2}\) for an estimable \(l'\beta \).

\[\text{Solution.} \]
Let \(\beta \) be the LSE of \(\beta \) and \(\hat{\sigma}^2 = \frac{||X - Z\hat{\beta}||^2}{(n - r)} \). Note that \((Z'X, \hat{\sigma}^2)\) is complete and sufficient for \((\beta, \sigma^2)\), \(\hat{\beta} \) has the normal distribution \(N(I'\beta, \sigma^2 I'(Z'Z)^{-1}) \), and \((n - r)\hat{\sigma}^2/\sigma^2 \) has the chi-square distribution \(\chi^2_{n-r} \), where \(A^- \) is a generalized inverse of \(A \). Since \(E(I'\hat{\beta}) = [E(I'\beta)] + \text{Var}(I'\hat{\beta}) = (I'\beta)^2 + \sigma^2 I'(Z'Z)^{-1} \), the UMVUE of \((l'\beta)^2\) is \((I'\beta)^2 - \hat{\sigma}^2 I'(Z'Z)^{-1} \). Since \(\kappa_{n-r,1}\hat{\sigma}^{-1} \) is the UMVUE of \(\sigma^{-1} \), where \(\kappa_{n-r,1} \) is given in Exercise 4, and \(I'\beta \) is independent of \(\hat{\sigma}^2, \kappa_{n-r,1} I'\hat{\beta}\hat{\sigma}^{-1} \) is the UMVUE of \(I'\beta/\sigma \). A similar argument yields the UMVUE of \((I'\beta/\sigma)^2\) as \((\kappa_{n-r,2}(I'\hat{\beta})^2\hat{\sigma}^{-2} - l'(Z'Z)^{-1}) \).

\[\text{Exercise 33 (#3.65).} \]
Consider the one-way random effects model

\[X_{ij} = \mu + A_i + e_{ij}, \quad j = 1, ..., n, i = 1, ..., m, \]

where \(\mu \in \mathcal{R} \) is an unknown parameter, \(A_i \)'s are independent and identically distributed as \(N(0, \sigma^2_a) \), \(e_{ij} \)'s are independent and identically distributed as \(N(0, \sigma^2) \), and \(A_i \)'s and \(e_{ij} \)'s are independent. Based on observed \(X_{ij} \)'s, show that the family of populations is an exponential family with sufficient and complete statistics \(\bar{X}_., S_A = n \sum_{i=1}^m (\bar{X}_i - \bar{X}_.)^2, \) and \(S_E = \sum_{i=1}^m \sum_{j=1}^n (X_{ij} - \bar{X}_i)^2, \) where \(\bar{X}_i = (nm)^{-1} \sum_{j=1}^n X_{ij} \) and \(\bar{X}_i = n^{-1} \sum_{j=1}^n X_{ij} \). Find the UMVUE’s of \(\mu, \sigma^2_a, \) and \(\sigma^2 \).

\[\text{Solution.} \]
Let \(X_i = (X_{i1}, ..., X_{in}) \), \(i = 1, ..., m \). Then \(X_1, ..., X_m \) are independent and identically distributed as the multivariate normal distribution \(N_n(\mu J_n, \Sigma) \), where \(J_n \) is the \(n \)-vector of 1’s and \(\Sigma = \sigma^2_a J_n J_n^\top + \sigma^2 I_n \). The joint Lebesgue density of \(X_i \)'s is

\[(2\pi)^{-\frac{mn}{2}} |\Sigma|^{-\frac{m}{2}} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (X_i - \mu J_n)^\top \Sigma^{-1} (X_i - \mu J_n) \right\}. \]

Note that

\[\Sigma^{-1} = (\sigma^2_a J_n J_n^\top + \sigma^2 I_n)^{-1} = \frac{1}{\sigma^2} I_n - \frac{\sigma^2_a}{\sigma^2(\sigma^2 + n\sigma^2_a)} J_n J_n^\top. \]
Hence, the sum in the exponent of the joint density is equal to

\[
\sum_{i=1}^{m} (X_i - \mu J_n)^{\top} \Sigma^{-1} (X_i - \mu J_n)
\]

\[
= \frac{1}{\sigma^2} \sum_{i=1}^{m} \sum_{j=1}^{n} (X_{ij} - \mu)^2 - \frac{n^2 \sigma_a^2}{\sigma^2 (\sigma^2 + n \sigma_a^2)} \sum_{i=1}^{m} (\bar{X}_i - \mu)^2
\]

\[
= \frac{1}{\sigma^2} \sum_{i=1}^{m} \sum_{j=1}^{n} (X_{ij} - \bar{X}_i)^2 + \frac{n}{\sigma^2 + n \sigma_a^2} \sum_{i=1}^{m} (\bar{X}_i - \mu)^2
\]

\[
= \frac{S_E}{\sigma^2} + \frac{S_A}{\sigma^2 + n \sigma_a^2} + \frac{n m}{\sigma^2 + n \sigma_a^2} \sum_{i=1}^{m} (\bar{X}_i - \mu)^2.
\]

Therefore, the joint density of X_{ij}’s is from an exponential family with $(\bar{X}_., S_A, S_E)$ as the sufficient and complete statistics for $(\mu, \sigma_a^2, \sigma^2)$. The UMVUE of μ is $\bar{X}_.$, since $EX_\cdot = \mu$. Since $E(S_E) = m(n - 1)\sigma^2$, the UMVUE of σ^2 is $SE/[m(n - 1)]$. Since \bar{X}_i, $i = 1, ..., m$, are independently from $N(\mu, \sigma_a^2 + \sigma^2/n)$, $E(S_A) = (m - 1)(\sigma^2 + n \sigma_a^2)$ and, thus, the UMVUE of σ_a^2 is $S_A/[n(m - 1)] - SE/[mn(n - 1)]$. \[\blacksquare\]

Exercise 34 (#3.66). Consider the linear model $X = Z\beta + \varepsilon$, where Z is a known $n \times p$ matrix, β is a p-vector of unknown parameters, and ε is a random n-vector whose components are independent and identically distributed with mean 0 and Lebesgue density $\sigma^{-1} f(x/\sigma)$, where f is a known Lebesgue density and $\sigma > 0$ is unknown. Find the Fisher information about (β, σ) contained in X.

Solution. Let Z_i be the ith row of Z, $i = 1, ..., n$. Consider a fixed i and let $\theta = (Z_i^\top \beta, \sigma^2)$. The Lebesgue density of X_i, the ith component of X, is $\sigma^{-1} f((x - \theta)/\sigma)$. From Exercise 20, the Fisher information about (θ, σ) contained in X_i is

\[I(\theta) = \frac{1}{\sigma^2} \begin{pmatrix}
\int \frac{[f'(x)]^2}{f(x)} dx & \int \frac{f'(x) [xf'(x) + f(x)]}{f(x)} dx \\
\int \frac{f'(x) [xf'(x) + f(x)]}{f(x)} dx & \int \frac{[xf'(x) + f(x)]^2}{f(x)} dx
\end{pmatrix}.
\]

Let a_{ij} be the (i,j)th element of the matrix $\sigma^2 I(\theta)$. Since X_i’s are independent, $\frac{\partial \theta}{\partial \beta} = Z_i^\top$ and $\frac{\partial \theta}{\partial \sigma} = 1$, the Fisher information about $\eta = (\beta, \sigma)$ contained in X is

\[
\sum_{i=1}^{n} \frac{\partial \theta}{\partial \eta} I(\theta) \frac{\partial \theta^*}{\partial \eta} = \frac{1}{\sigma^2} \sum_{i=1}^{n} \begin{pmatrix}
Z_i & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
a_{11} & a_{12} & Z_i^\top \\
a_{21} & a_{22} & 0
\end{pmatrix} \begin{pmatrix}
a_{11} Z_i Z_i^\top & a_{12} Z_i \\
a_{21} Z_i^\top & a_{22}
\end{pmatrix} = \frac{1}{\sigma^2} \sum_{i=1}^{n} \begin{pmatrix}
a_{11} Z_i Z_i^\top & a_{12} Z_i \\
a_{21} Z_i^\top & a_{22}
\end{pmatrix}. \[\blacksquare\]
Exercise 35 (#3.67). Consider the linear model \(X = Z\beta + \epsilon \), where \(Z \) is a known \(n \times p \) matrix, \(\beta \) is a \(p \)-vector of unknown parameters, and \(\epsilon \) is a random \(n \)-vector whose components are independent and identically distributed with mean 0 and variance \(\sigma^2 \). Let \(c \in \mathbb{R}^p \). Show that if the equation \(c = Z^\tau y \) has a solution, then there is a unique solution \(y_0 \in \mathcal{R}(Z^\tau) \) such that \(\text{Var}(y_0^\tau X) \leq \text{Var}(y^\tau X) \) for any other solution of \(c = Z^\tau y \).

Solution. Since \(c = Z^\tau y \) has a solution, \(c \in \mathcal{R}(Z) = \mathcal{R}(Z^\tau Z) \). Then, there is \(\lambda \in \mathbb{R}^p \) such that \(c = (Z^\tau Z)\lambda = Z^\tau y_0 \) with \(y_0 = Z\lambda \in \mathcal{R}(Z) \). This shows that \(c = Z^\tau y \) has a solution in \(\mathcal{R}(Z^\tau) \). Suppose that there is another \(y_1 \in \mathcal{R}(Z^\tau) \) such that \(c = Z^\tau y_1 \). Then \(y_0^\tau Z\beta = c^\tau \beta = y_1^\tau Z\beta \) for all \(\beta \in \mathbb{R}^p \). Since \(\mathcal{R}(Z^\tau) = \{Z\beta : \beta \in \mathbb{R}^p \} \), \(y_0 = y_1 \), i.e., the solution of \(c = Z^\tau y \) in \(\mathcal{R}(Z^\tau) \) is unique. For any \(y \in \mathbb{R}^n \) satisfying \(c = Z^\tau y \),

\[
\text{Var}(y^\tau X) = \text{Var}(y^\tau X - y_0^\tau X + y_0^\tau X) \\
= \text{Var}(y^\tau X - y_0^\tau X) + \text{Var}(y_0^\tau X) + 2\text{Cov}((y - y_0)^\tau X, y_0^\tau X) \\
= \text{Var}(y^\tau X - y_0^\tau X) + \text{Var}(y_0^\tau X) + 2E[(y - y_0)^\tau XX^\tau y_0] \\
= \text{Var}(y^\tau X - y_0^\tau X) + \text{Var}(y_0^\tau X) + 2\sigma^2(y - y_0)^\tau y_0 \\
= \text{Var}(y^\tau X - y_0^\tau X) + \text{Var}(y_0^\tau X) + 2(y_0^\tau X)\lambda \\
= \text{Var}(y^\tau X - y_0^\tau X) + \text{Var}(y_0^\tau X) + 2(c^\tau - c_0^\tau)\lambda \\
= \text{Var}(y^\tau X - y_0^\tau X) + \text{Var}(y_0^\tau X) \\
\geq \text{Var}(y_0^\tau X).
\]

Exercise 36 (#3.69). Consider the linear model \(X = Z\beta + \epsilon \), where \(Z \) is a known \(n \times p \) matrix, \(\beta \) is a \(p \)-vector of unknown parameters, and \(\epsilon \) is a random \(n \)-vector whose components are independent and identically distributed with mean 0 and variance \(\sigma^2 \). Let \(X_i \) be the \(i \)-th component of \(X \), \(Z_i \) be the \(i \)-th row of \(Z \), \(h_{ij} \) be the \((i,j) \)-th element of \(Z(Z^\tau Z)^{-1}Z^\tau \), \(h_i = h_{ii} \), \(\hat{\beta} \) be an LSE of \(\beta \), and \(\hat{X}_i = Z_i^\tau \hat{\beta} \). Show that

(i) \(\text{Var}(\hat{X}_i) = \sigma^2 h_i \);

(ii) \(\text{Var}(X_i - \hat{X}_i) = \sigma^2(1 - h_i) \);

(iii) \(\text{Cov}(\hat{X}_i, \hat{X}_j) = \sigma^2 h_{ij} \);

(iv) \(\text{Cov}(X_i - \hat{X}_i, X_j - \hat{X}_j) = -\sigma^2 h_{ij}, i \neq j \);

(v) \(\text{Cov}(\hat{X}_i, X_j - \hat{X}_j) = 0 \).

Solution. (i) Since \(Z_i \in \mathcal{R}(Z) \), \(Z_i^\tau \hat{\beta} \) is estimable and

\[
\text{Var}(Z_i^\tau \hat{\beta}) = \sigma^2 Z_i^\tau (Z^\tau Z)^{-1} Z_i = \sigma^2 h_i.
\]

(ii) Note that

\[
\hat{X}_i = Z_i^\tau \hat{\beta} = Z_i^\tau (Z^\tau Z)^{-1} Z^\tau X = \sum_{j=1}^{n} h_{ij} X_j.
\]
Hence,
\[X_i - \hat{X}_i = (1 - h_i)X_i - \sum_{j \neq i} h_{ij}X_j. \]

Since \(X_i \)'s are independent and \(\text{Var}(X_i) = \sigma^2 \), we obtain that
\[\text{Var}(X_i - \hat{X}_i) = (1 - h_i)^2 \sigma^2 + \sigma^2 \sum_{j \neq i} h_{ij}^2 \]
\[= (1 - h_i)^2 \sigma^2 + (h_i - h_i^2)\sigma^2 \]
\[= (1 - h_i)\sigma^2, \]
where the second equality follows from the fact that \(\sum_{j=1}^n h_{ij}^2 = h_{ii} = h_i \), a property of the projection matrix \(\mathbf{Z}(\mathbf{Z}^\tau\mathbf{Z})^{-1}\mathbf{Z}^\tau \).

(iii) Using the formula for \(\hat{X}_i \) in part (ii) of the solution and the independence of \(X_i \)'s,
\[\text{Cov}(\hat{X}_i, \hat{X}_j) = \text{Cov} \left(\sum_{k=1}^n h_{ik}X_k, \sum_{l=1}^n h_{ji}X_l \right) = \sigma^2 \sum_{k=1}^m h_{ik}h_{jk} = \sigma^2 h_{ij}, \]
where the last equality follows from the fact that \(\mathbf{Z}(\mathbf{Z}^\tau\mathbf{Z})^{-1}\mathbf{Z}^\tau \) is a projection matrix.

(iv) For \(i \neq j \),
\[\text{Cov}(X_i, \hat{X}_j) = \text{Cov} \left(X_i, \sum_{k=1}^n h_{jk}X_k \right) = \sigma^2 h_{ij} \]
and, thus,
\[\text{Cov}(X_i - \hat{X}_i, X_j - \hat{X}_j) = -\text{Cov}(X_i, \hat{X}_j) - \text{Cov}(X_j, \hat{X}_i) + \text{Cov}(\hat{X}_i, \hat{X}_j) \]
\[= -\sigma^2 h_{ij} - \sigma^2 h_{ji} + \sigma^2 h_{ij} \]
\[= -\sigma^2 h_{ij}. \]

(v) From part (iii) and part (iv) of the solution,
\[\text{Cov}(\hat{X}_i, X_j - \hat{X}_j) = \text{Cov}(\hat{X}_i, X_j) - \text{Cov}(\hat{X}_i, \hat{X}_j) = \sigma^2 h_{ij} - \sigma^2 h_{ij} = 0. \]

Exercise 37 (#3.70). Consider the linear model \(X = Z\beta + \varepsilon \), where \(Z \) is a known \(n \times p \) matrix, \(\beta \) is a \(p \)-vector of unknown parameters, and \(\varepsilon \) is a random \(n \)-vector whose components are independent and identically distributed with mean 0 and variance \(\sigma^2 \). Let \(Z = (Z_1, Z_2) \) and \(\beta = (\beta_1, \beta_2) \), where \(Z_j \) is \(n \times p_j \) and \(\beta_j \) is a \(p_j \)-vector, \(j = 1, 2 \). Assume that \((Z_1^\tau Z_1)^{-1} \) and \([Z_2^\tau Z_2 - Z_2^\tau Z_1(Z_1^\tau Z_1)^{-1}Z_1^\tau Z_2]^{-1} \) exist.

(i) Derive the LSE of \(\beta \) in terms of \(Z_1, Z_2, \) and \(X \).
(ii) Let $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2)$ be the LSE in (i). Calculate the covariance between $\hat{\beta}_1$ and $\hat{\beta}_2$.

(iii) Suppose that it is known that $\beta_2 = 0$. Let $\tilde{\beta}_1$ be the LSE of β_1 under the reduced model $X = Z_1 \beta_1 + \varepsilon$. Show that, for any $l \in \mathbb{R}^{p_1}$, $l^\tau \tilde{\beta}_1$ is better than $l^\tau \hat{\beta}_1$ in terms of their variances.

Solution. (i) Note that
\[
Z^\tau Z = \begin{pmatrix}
Z^\tau_1 Z_1 & Z^\tau_1 Z_2 \\
Z^\tau_2 Z_1 & Z^\tau_2 Z_2
\end{pmatrix}.
\]

From matrix algebra,
\[
(Z^\tau Z)^{-1} = \begin{pmatrix}
A & B \\
B^\tau & C
\end{pmatrix},
\]
where
\[
C = [Z^\tau_2 Z_2 - Z^\tau_2 Z_1 (Z^\tau_1 Z_1)^{-1} Z^\tau_1 Z_2]^{-1},
B = -(Z^\tau_1 Z_1)^{-1} C
\]
and
\[
A = (Z^\tau_1 Z_1)^{-1} + (Z^\tau_1 Z_1)^{-1} Z^\tau_1 Z_2 C Z^\tau_2 Z_1 (Z^\tau_1 Z_1)^{-1}.
\]
The LSE of β is
\[
\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X = \begin{pmatrix}
A & B \\
B^\tau & C
\end{pmatrix} \begin{pmatrix}
Z^\tau_1 X \\
Z^\tau_2 X
\end{pmatrix} = \begin{pmatrix}
AZ^\tau_1 X + BZ^\tau_2 X \\
B^\tau Z^\tau_1 X + CZ^\tau_2 X
\end{pmatrix}.
\]

(ii) Since $\text{Var}(\hat{\beta}) = \sigma^2 (Z^\tau Z)^{-1}$, $\text{Cov}(\hat{\beta}_1, \hat{\beta}_2) = \sigma^2 B$.

(iii) Note that $\text{Var}(l^\tau \hat{\beta}_1) = \sigma^2 l^\tau (Z^\tau_1 Z_1)^{-1} l$. From part (i) of the solution,
\[
\text{Var}(l^\tau \hat{\beta}_1) = \sigma^2 l^\tau A l \geq \sigma^2 l^\tau (Z^\tau_1 Z_1)^{-1} l.
\]

Exercise 38 (#3.71, #3.72). Consider the linear model $X = Z \beta + \varepsilon$, where Z is a known $n \times p$ matrix, β is a p-vector of unknown parameters, and ε is a random n-vector with $E(\varepsilon) = 0$ and finite $\text{Var}(\varepsilon) = \Sigma$. Show the following statements are equivalent:

(a) The LSE $l^\tau \beta$ is the best linear unbiased estimator (BLUE) of $l^\tau \beta$.
(b) $\text{Var}(\varepsilon) = Z \Lambda_1 Z^\tau + U \Lambda_2 U^\tau$ for some matrices Λ_1 and Λ_2, where U is a matrix such that $Z^\tau U = 0$ and $R(U^\tau) + R(Z^\tau) = \mathbb{R}^n$.
(c) $\text{Var}(\varepsilon) = ZB$ for some matrix B.
(d) $R(Z^\tau)$ is generated by r eigenvectors of $\text{Var}(\varepsilon)$, where r is the rank of Z.

Solution. (i) From the proof in Shao (2003, p. 191), (a) is equivalent to (c) $Z^\tau \text{Var}(\varepsilon) U = 0$ and (c) implies (e). Hence, to show that (a) and (e) are
equivalent, it suffices to show that (e) implies (c). Since \(Z(Z^T Z)^{-1} Z^T Z = Z\), (e) implies that
\[
Z^T \text{Var}(\varepsilon) U = Z^T ZZ(Z^T Z)^{-1} Z^T \text{Var}(\varepsilon) U = Z^T \text{Var}(\varepsilon) Z(Z^T Z)^{-1} Z^T U = 0.
\]

(ii) We now show that (f) and (c) are equivalent. If (f) holds, then \(\text{Var}(\varepsilon) Z = ZB\) for some matrix \(B\) and
\[
Z^T \text{Var}(\varepsilon) U = B^T Z^T U = 0.
\]
If (c) holds, then (e) holds. Then
\[
\text{Var}(\varepsilon) Z = \text{Var}(\varepsilon) Z(Z^T Z)^{-1} Z^T Z = Z(Z^T Z)^{-1} Z^T \text{Var}(\varepsilon) Z
\]
and (f) holds with \(B = (Z^T Z)^{-1} Z^T \text{Var}(\varepsilon) Z\).

(iii) Assume that (g) holds. Then \(\mathcal{R}(Z^T) = \mathcal{R}(\xi_1, \ldots, \xi_r)\), the linear space generated by \(r\) linearly independent eigenvectors \(\xi_1, \ldots, \xi_r\) of \(\text{Var}(\varepsilon)\). Let \(\xi_{r+1}, \ldots, \xi_n\) be the other \(n-r\) linearly independent eigenvectors of \(\text{Var}(\varepsilon)\) that are orthogonal to \(\xi_1, \ldots, \xi_r\). Then \(\mathcal{R}(U^T) = \mathcal{R}(\xi_{r+1}, \ldots, \xi_n)\). For \(j \leq r\), \(\text{Var}(\varepsilon) \xi_j = a_j \xi_j\) for some constant \(a_j\). For \(k \geq r+1\), \(\xi_j^T \text{Var}(\varepsilon) \xi_k = a \xi_j^T \xi_k = 0\). Hence, \(Z^T \text{Var}(\varepsilon) U = 0\), i.e., (c) holds.

Now, assume (c) holds. Let \(\xi_1, \ldots, \xi_n\) be \(n\) orthogonal eigenvectors of \(\text{Var}(\varepsilon)\) and \(M\) be the matrix with \(\xi_i\) as the \(i\)th column. Decompose \(M\) as \(M = M_Z + M_U\), where columns of \(M_Z\) are in \(\mathcal{R}(Z^T)\) and columns of \(M_U\) are in \(\mathcal{R}(U^T)\). Then
\[
\text{Var}(\varepsilon) M_Z + \text{Var}(\varepsilon) M_U = M_Z D + M_U D,
\]
where \(D\) is a diagonal matrix. Multiplying the transposes of both sides of the above equation by \(M_U^T\) from the right, we obtain that, by (c),
\[
M_U^T \text{Var}(\varepsilon) M_U = D M_U^T M_U
\]
which is the same as
\[
\text{Var}(\varepsilon) M_U = M_U D,
\]
and, hence,
\[
\text{Var}(\varepsilon) M_Z = M_Z D.
\]
This means that column vectors of \(M_Z\) are eigenvectors of \(\text{Var}(\varepsilon)\). Then (g) follows from \(\mathcal{R}(Z) = \mathcal{R}(M_Z)\).

Exercise 39 (#3.74). Suppose that
\[
X = \mu J_n + H \xi + e,
\]
where \(\mu \in \mathcal{R}\) is an unknown parameter, \(J_n\) is the \(n\)-vector of 1’s, \(H\) is an \(n \times p\) known matrix of full rank, \(\xi\) is a random \(p\)-vector with \(E(\xi) = 0\) and
\[\text{Var}(\xi) = \sigma_\xi^2 I_p, \text{ e is a random } n\text{-vector with } E(e) = 0 \text{ and } \text{Var}(e) = \sigma^2 I_n, \text{ and } \xi \text{ and } e \text{ are independent. Show that the LSE of } \mu \text{ is the BLUE if and only if the row totals of } HH^\tau \text{ are the same.} \]

Solution. From the result in the previous exercise, it suffices to show that the LSE of \(\mu \) is the BLUE if and only if \(J_n \) is an eigenvector of \(\text{Var}(H\xi + e) = \sigma^2 HH^\tau + \sigma^2 I_n \). Since

\[(\sigma^2 HH^\tau + \sigma^2 I_n)J_n = \sigma^2 \eta + \sigma^2 J_n, \]

where \(\eta \) is the vector of row totals of \(HH^\tau \), \(J_n \) is an eigenvector of the matrix \(\text{Var}(H\xi + e) \) if and only if \(\eta = cJ_n \) for some constant. ☐

Exercise 40 (\#3.75). Consider a linear model

\[X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \quad i = 1, \ldots, a, j = 1, \ldots, b, \]

where \(\mu, \alpha_i \)'s, and \(\beta_j \)'s are unknown parameters, \(E(\varepsilon_{ij}) = 0 \), \(\text{Var}(\varepsilon_{ij}) = \sigma^2 \), \(\text{Cov}(\varepsilon_{ij}, \varepsilon_{i'j'}) = 0 \) if \(i \neq i' \), and \(\text{Cov}(\varepsilon_{ij}, \varepsilon_{ij'}) = \sigma^2 \rho \) if \(j \neq j' \). Show that the LSE of \(l^\tau \beta \) is the BLUE for any \(l \in \mathcal{R}(Z) \).

Solution. Write the model in the form of \(X = Z\beta + \varepsilon \). Then \(\text{Var}(\varepsilon) \) is a block diagonal matrix whose \(j \)th diagonal block is \(\sigma^2 (1 - \rho) I_a + \sigma^2 \rho J_a J_a^\tau \), \(j = 1, \ldots, b \), where \(I_a \) is the identity matrix of order \(a \) and \(J_a \) is the \(a \)-vector of 1's. Let \(A \) and \(B \) be as defined in Exercise 31. Then \(Z = (J_{ab} \ A \ B^\tau) \).

Let \(\Lambda \) be the \((1 + a + b) \times (1 + a + b) \) matrix whose first element is \(\sigma^2 \rho \) and all the other elements are 0. Then, \(Z\Lambda Z^\tau \) is a block diagonal matrix whose \(j \)th diagonal block is \(\sigma^2 \rho J_a J_a^\tau \), \(j = 1, \ldots, b \). Thus,

\[\text{Var}(\varepsilon) = \sigma^2 (1 - \rho) I_{ab} + Z\Lambda Z^\tau. \]

This shows that (c) in Exercise 38 holds. Hence, the LSE of \(l^\tau \beta \) is the BLUE for any \(l \in \mathcal{R}(Z) \). ☐

Exercise 41 (\#3.76). Consider the linear model \(X = Z\beta + \varepsilon \), where \(Z \) is a known \(n \times p \) matrix, \(\beta \) is a \(p \)-vector of unknown parameters, and \(\varepsilon \) is a random \(n \)-vector with \(E(\varepsilon) = 0 \) and \(\text{Var}(\varepsilon) \) is a block diagonal matrix whose \(i \)th block diagonal \(V_i \) is \(n_i \times n_i \) and has a single eigenvalue \(\lambda_i \) with eigenvector \(J_{n_i} \) (the \(n_i \)-vector of 1's) and a repeated eigenvalue \(\rho_i \) with multiplicity \(n_i - 1, i = 1, \ldots, k, \sum_{i=1}^k n_i = n \). Let \(U \) be the \(n \times k \) matrix whose \(i \)th column is \(U_i \), where \(U_1 = (J_{n_1}^\tau, 0, \ldots, 0), U_2 = (0, J_{n_2}^\tau, \ldots, 0), \ldots, U_k = (0, 0, \ldots, J_{n_k}^\tau) \), and let \(\hat{\beta} \) be the LSE of \(\beta \).

(i) If \(\mathcal{R}(Z^\tau) \subset \mathcal{R}(U^\tau) \) and \(\lambda_i \equiv \lambda \), show that \(l^\tau \hat{\beta} \) is the BLUE of \(l^\tau \beta \) for any \(l \in \mathcal{R}(Z) \).

(ii) If \(Z^\tau U_i = 0 \) for all \(i \) and \(\rho_i \equiv \rho \), show that \(l^\tau \hat{\beta} \) is the BLUE of \(l^\tau \beta \) for any \(l \in \mathcal{R}(Z) \).
Solution. (i) Condition $\mathcal{R}(Z^\tau) \subset \mathcal{R}(U^\tau)$ implies that there exists a matrix B such that $Z = UB$. Then

$$\text{Var}(\varepsilon)Z = \text{Var}(\varepsilon)UB = \lambda UB = \lambda Z$$

and, thus,

$$Z(Z^\tau Z)^{-} Z^\tau \text{Var}(\varepsilon) = \lambda Z(Z^\tau Z)^{-} Z^\tau,$$

which is symmetric. Hence the result follows from the result in Exercise 38.

(ii) Let Λ_ρ be the $(n-k) \times (n-k)$ matrix whose columns are the $n-k$ eigenvectors corresponding to the eigenvalue ρ. Then $Z^\tau U_i = 0$ for all i implies that $\mathcal{R}(Z^\tau) \subset \mathcal{R}(\Lambda_\rho^\tau)$ and there exists a matrix C such that $Z = \Lambda_\rho C$. Since

$$\text{Var}(\varepsilon)Z = \text{Var}(\varepsilon)\Lambda_\rho C = \rho \Lambda_\rho C = \rho Z,$$

we obtain that

$$Z(Z^\tau Z)^{-} Z^\tau \text{Var}(\varepsilon) = \rho Z(Z^\tau Z)^{-} Z^\tau,$$

which is symmetric. Hence the result follows from the result in Exercise 38.

Exercise 42 (#3.80). Consider the linear model $X = Z\beta + \varepsilon$, where Z is a known $n \times p$ matrix, β is a p-vector of unknown parameters, and $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$ with independent and identically distributed $\varepsilon_1, \ldots, \varepsilon_n$ having $E(\varepsilon_i) = 0$ and $\text{Var}(\varepsilon_i) = \sigma^2$. Let Z_i be the ith row of Z, $\hat X_i = Z_i^\tau \hat \beta$; $\hat \beta$ be the LSE of β, and $h_i = Z_i^\tau (Z^\tau Z)^{-} Z_i$.

(i) Show that for any $\epsilon > 0$,

$$P(|\hat X_i - E\hat X_i| \geq \epsilon) \geq \min\{P(\varepsilon_i \geq \epsilon/h_i), P(\varepsilon_i \leq -\epsilon/h_i)\}.$$

(ii) Show that $\hat X_i - E\hat X_i \to_p 0$ if and only if $\lim_n h_i = 0$.

Solution. (i) For independent random variables U and Y and $\epsilon > 0$,

$$P(|U + Y| \geq \epsilon) \geq P(U \geq \epsilon)P(Y \geq 0) + P(U \leq -\epsilon)P(Y < 0) \geq \min\{P(U \geq \epsilon), P(U \leq -\epsilon)\}.$$

Using the result in the solution of Exercise 36,

$$\hat X_i - E\hat X_i = \sum_{j=1}^n h_{ij} (X_j - EX_j) = \sum_{j=1}^n h_{ij}\varepsilon_j = h_i\varepsilon_i + \sum_{j \neq i} h_{ij}\varepsilon_j.$$

Then the result follows by taking $U = h_i\varepsilon_i$ and $Y = \sum_{j \neq i} h_{ij}\varepsilon_j$.

(ii) If $\hat X_i - E\hat X_i \to_p 0$, then it follows from the result in (i) that

$$\lim_{n} \min\{P(\varepsilon_i \geq \epsilon/h_i), P(\varepsilon_i \leq -\epsilon/h_i)\} = 0,$$
which holds only if \(\lim n h_i = 0 \). Suppose now that \(\lim h_i = 0 \). From Exercise 36, \(\lim n \text{Var}(\hat{X}_i) = \lim n \sigma^2 h_i = 0 \). Therefore, \(\hat{X}_i - E\hat{X}_i \to_p 0 \).

Exercise 43 (#3.81). Let \(Z \) be an \(n \times p \) matrix, \(Z_i \) be the \(i \)th row of \(Z \), \(h_i = Z_i^\tau (Z^\tau Z)^{-} Z_i \), and \(\lambda_n \) be the largest eigenvalue of \((Z^\tau Z)^{-}\). Show that if \(\lim n \lambda_n = 0 \) and \(\lim n Z_n^\tau (Z^\tau Z)^{-} Z_n = 0 \), then \(\lim n \max_{1 \leq i \leq n} h_i = 0 \).

Solution. Since \((Z^\tau Z)^{-}\) depends on \(n \), we denote \((Z^\tau Z)^{-}\) by \(A_n \). Let \(i_n \) be the integer such that \(h_{i_n} = \max_{1 \leq i \leq n} h_i \). If \(\lim n i_n = \infty \), then

\[
\lim_n h_{i_n} = \lim_n Z_{i_n}^\tau A_n Z_{i_n} = \lim_n Z_{i_n}^\tau A_n Z_{i_n} = 0,
\]

where the inequality follows from \(i_n \leq n \) and, thus, \(A_{i_n} - A_n \) is nonnegative definite. If \(i_n \leq c \) for all \(n \), then

\[
\lim_n h_{i_n} = \lim_n Z_{i_n}^\tau A_n Z_{i_n} \leq \lim_n \max_{1 \leq i \leq c} \|Z_i\|^2 = 0.
\]

Therefore, for any subsequence \(\{j_n\} \subset \{i_n\} \) with \(\lim n j_n = a \in (0, \infty] \), \(\lim n h_{j_n} = 0 \). This shows that \(\lim n h_{i_n} = 0 \).

Exercise 44 (#3.84). Consider the one-way random effects model

\[
X_{ij} = \mu + A_i + e_{ij}, \quad j = 1, \ldots, n_i, i = 1, \ldots, m,
\]

where \(\mu \in \mathcal{R} \) is an unknown parameter, \(A_i \)'s are independent and identically distributed with mean 0 and variance \(\sigma^2_a \), \(e_{ij} \)'s are independent with mean 0, and \(A_i \)'s and \(e_{ij} \)'s are independent. Assume that \(\{n_i\} \) is bounded and \(E|e_{ij}|^{2+\delta} < \infty \) for some \(\delta > 0 \). Show that the LSE \(\hat{\mu} \) of \(\mu \) is asymptotically normal and derive an explicit form of \(\text{Var}(\hat{\mu}) \).

Solution. The LSE of \(\mu \) is \(\hat{\mu} = \hat{X}_n \), the average of \(X_{ij} \)'s. The model under consideration can be written as \(X = Z\mu + \varepsilon \) with \(Z = J_n, Z^\tau Z = n \), and

\[
\lim_n \max_{1 \leq i \leq n} Z_i^\tau (Z^\tau Z)^{-} Z_i = \lim_n \frac{1}{n} = 0.
\]

Since we also have \(E|e_{ij}|^{2+\delta} < \infty \) and \(\{n_i\} \) is bounded, by Theorem 3.12(i) in Shao (2003),

\[
\frac{\hat{\mu} - \mu}{\sqrt{\text{Var}(\hat{\mu})}} \to d N(0, 1),
\]

where \(\text{Var}(\hat{\mu}) = \text{Var}(\hat{X}_n) = n^{-2} \sum_{i=1}^m (n_i^2 \sigma^2_a + n_i \sigma^2) \).

Exercise 45 (#3.85). Suppose that

\[
X_i = \rho t_i + \varepsilon_i, \quad i = 1, \ldots, n,
\]

where \(\rho \in \mathcal{R} \) is an unknown parameter, \(t_i \)'s are known and in \((a, b)\), \(a \) and \(b \) are known positive constants, and \(\varepsilon_i \)'s are independent random variables
satisfying $E(\varepsilon_i) = 0$, $E|\varepsilon_i|^{2+\delta} < \infty$ for some $\delta > 0$, and $\text{Var}(\varepsilon_i) = \sigma^2 t_i$ with an unknown $\sigma^2 > 0$.

(i) Obtain the LSE of ρ.

(ii) Obtain the BLUE of ρ.

(iii) Show that both the LSE and BLUE are asymptotically normal and obtain the asymptotic relative efficiency of the BLUE with respect to the LSE.

Solution.

(i) The LSE of ρ is

$$\hat{\rho} = \frac{\sum_{i=1}^n t_i X_i}{\sum_{i=1}^n t_i^2}.$$

(iii) Let $X = (X_1, ..., X_n)$ and $c = (c_1, ..., c_n)$. Consider minimizing

$$E(c^\top X - \rho)^2 = \sum_{i=1}^n t_i c_i^2$$

under the constraint $\sum_{i=1}^n c_i t_i = 1$ (to ensure unbiasedness), which yields $c_i = (\sum_{i=1}^n t_i)^{-1}$. Hence, the BLUE of ρ is

$$\tilde{\rho} = \frac{\sum_{i=1}^n X_i}{\sum_{i=1}^n t_i}.$$

(iii) The asymptotic normality of the LSE and BLUE follows directly from Lindeberg’s central limit theorem. Since

$$\text{Var}(\hat{\rho}) = \frac{\sigma^2 \sum_{i=1}^n t_i^3}{(\sum_{i=1}^n t_i^2)^2},$$

and

$$\text{Var}(\tilde{\rho}) = \frac{\sigma^2}{\sum_{i=1}^n t_i},$$

the asymptotic relative efficiency of the BLUE with respect to the LSE is

$$\frac{(\sum_{i=1}^n t_i^3)^2}{(\sum_{i=1}^n t_i^2)(\sum_{i=1}^n t_i)}.$$

Exercise 46 (#3.87). Suppose that $X = (X_1, ..., X_n)$ is a simple random sample without replacement from a finite population $P = \{y_1, ..., y_N\}$ with all $y_i \in \mathcal{R}$.

(i) Show that a necessary condition for $h(y_1, ..., y_N)$ to be estimable is that h is symmetric in its N arguments.

(ii) Find the UMVUE of $P(X_i \leq X_j)$, $i \neq j$.

(iii) Find the UMVUE of $\text{Cov}(X_i, X_j)$, $i \neq j$.
Solution. (i) If \(h(y_1, \ldots, y_N) \) is estimable, then there exists a function \(u(x_1, \ldots, x_n) \) that is symmetric in its arguments and satisfies

\[
 h(y_1, \ldots, y_N) = E[u(X_1, \ldots, X_n)] = \frac{1}{\binom{N}{n}} \sum_{1 \leq i_1 < \cdots < i_n \leq N} u(y_{i_1}, \ldots, y_{i_n}).
\]

Hence, \(h \) is symmetric in its arguments.

(ii) From Watson-Royall’s theorem (e.g., Theorem 3.13 in Shao, 2003), the order statistics are complete and sufficient. Hence, for any estimable parameter, its UMVUE is the unbiased estimator \(g(X_1, \ldots, X_n) \) that is symmetric in its arguments. Thus, the UMVUE of \(P(X_i \leq X_j), i \neq j \), is

\[
 U_1 = \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} I_{(-\infty, X_i]}(X_j) + I_{(-\infty, X_j]}(X_i) \cdot \frac{1}{2}.
\]

(iii) From the argument in part (ii) of the solution, the UMVUE of \(E(X_iX_j) \) when \(i \neq j \) is

\[
 U_1 = \frac{1}{nN} \sum_{i=1}^{N} X_iX_j.
\]

Let \(\bar{X} \) be the sample mean. Since

\[
 E(\bar{X}^2) = \frac{1}{nN} \sum_{i=1}^{N} y_i^2 + \frac{2(n-1)}{nN(N-1)} \sum_{1 \leq i < j \leq N} y_iy_j
\]

and

\[
 E \left(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \right) = \frac{1}{N} \sum_{i=1}^{N} y_i^2,
\]

the UMVUE of \(2 \sum_{1 \leq i < j \leq N} y_iy_j \) is

\[
 U_2 = \frac{nN(N-1)}{n-1} \left(\bar{X}^2 - \frac{1}{n^2} \sum_{i=1}^{n} X_i^2 \right).
\]

From

\[
 \text{Cov}(X_i, X_j) = E(X_iX_j) - \left(\frac{1}{N} \sum_{i=1}^{N} y_i \right)^2
\]

\[
 = E(X_iX_j) - \frac{1}{N^2} \sum_{i=1}^{N} y_i^2 - \frac{2}{N^2} \sum_{1 \leq i < j \leq N} y_iy_j,
\]

the UMVUE of \(\text{Cov}(X_i, X_j), i \neq j \), is

\[
 U_1 - \frac{1}{nN} \sum_{i=1}^{n} X_i^2 - \frac{U_2}{N^2}.
\]
Exercise 47 (\#3.100). Let \((X_1, \ldots, X_n)\) be a random sample from the normal distribution \(N(\mu, \sigma^2)\), where \(\mu \in \mathbb{R}\) and \(\sigma^2 > 0\). Consider the estimation of \(\vartheta = E[\Phi(a + bX_1)]\), where \(\Phi\) is the cumulative distribution function of \(N(0, 1)\) and \(a\) and \(b\) are known constants. Obtain an explicit form of a function \(g(\mu, \sigma^2) = \vartheta\) and the asymptotic mean squared error of \(\hat{\vartheta} = g(\bar{X}, S^2)\), where \(\bar{X}\) and \(S^2\) are the sample mean and variance.

Solution. Let \(Z\) be a random variable that has distribution \(N(0, 1)\) and is independent of \(X_1\). Define \(Y = Z - bX_1\). Then \(Y\) has distribution \(N(-b\mu, 1 + b^2\sigma^2)\) and \(E[\Phi(a + bX_1)] = E[\Phi(Z - bX_1)] = E[\Phi(Y)] = \Phi\left(\frac{a + b\mu}{\sqrt{1 + b^2\sigma^2}}\right)\).

Hence
\[
g(\mu, \sigma^2) = \Phi\left(\frac{a + b\mu}{\sqrt{1 + b^2\sigma^2}}\right).
\]

From Example 2.8 in Shao (2003),
\[
\sqrt{n}\left(\begin{array}{c}
\bar{X} - \mu \\
S^2 - \sigma^2
\end{array}\right) \rightarrow_d N_2\left(\left(\begin{array}{c}0 \\
0
\end{array}\right), \left(\begin{array}{cc}\sigma^2 & 0 \\
0 & 2\sigma^4
\end{array}\right)\right).
\]

Then, by the \(\delta\)-method,
\[
\sqrt{n}(\hat{\vartheta} - \vartheta) = \sqrt{n}[g(\bar{X}, S^2) - \vartheta] \rightarrow_d N(0, \kappa),
\]

where
\[
\kappa = \left[\frac{b^2\sigma^2}{1 + b^2\sigma^2} + \frac{(a + b\mu)^2b^4\sigma^2}{2(1 + b^2\sigma^2)}\right]\left[\Phi'\left(\frac{a + b\mu}{\sqrt{1 + b^2\sigma^2}}\right)\right]^2.
\]

The asymptotic mean squared error of \(\hat{\vartheta}\) is \(\kappa/n\).

Exercise 48 (\#3.103). Let \((X_1, \ldots, X_n)\) be a random sample from \(P\) in a parametric family. Obtain moment estimators of parameters in the following cases.

(i) \(P\) is the gamma distribution with shape parameter \(\alpha > 0\) and scale parameter \(\gamma > 0\).

(ii) \(P\) has Lebesgue density \(\theta^{-1} e^{-(x-a)/\theta} I_{(a, \infty)}(x), a \in \mathbb{R}, \theta > 0\).

(iii) \(P\) has Lebesgue density \(\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}I_{(0,1)}(x), \alpha > 0, \beta > 0\).

(iv) \(P\) is the log-normal distribution with parameter \((\mu, \sigma^2)\) (i.e., log \(X_1\).
has distribution \(N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0\).

(v) \(P^n\) is the negative binomial distribution with discrete probability density
\[
\frac{p^n(1-p)^{x-r}}{\binom{x-1}{r-1}}, \quad x = r, r+1, \ldots, \quad p \in (0, 1), \quad r = 1, 2, \ldots
\]

Solution. Let \(\mu_k = E(X_1^k)\) and \(\hat{\mu}_k = n^{-1}\sum_{i=1}^n X_i^k\).

(i) Note that \(\hat{\mu} = \alpha \gamma\) and \(\mu_2 - \mu_1^2 = \alpha \gamma^2\). Hence, the moment estimators are \(\hat{\gamma} = (\hat{\mu}_2 - \hat{\mu}_1^2)/\hat{\mu}_1\) and \(\hat{\alpha} = \hat{\mu}_1^2/(\hat{\mu}_2 - \hat{\mu}_1^2)\).

(ii) Note that \(\hat{\mu}_1 = \alpha + \theta\) and \(\mu_2 - \mu_1^2 = \theta^2\). Hence, the moment estimators are \(\hat{\theta} = \sqrt{\hat{\mu}_2 - \hat{\mu}_1^2}\) and \(\hat{\alpha} = \hat{\mu}_1 - \hat{\theta}\).

(iii) Note that \(\hat{\mu}_1 = \alpha/(\alpha + \beta)\) and \(\mu_2 = \alpha(\alpha + 1)/[(\alpha + \beta)(\alpha + \beta + 1)]\). Then \(1 + \beta/\alpha = \mu_1^{-1}\), which leads to \(\mu_2 = \mu_1(1 + \alpha^{-1})/\mu_1^{-1} + \alpha^{-1})\). Then the moment estimators are \(\hat{\alpha} = \hat{\mu}_1(\hat{\mu}_1 - \hat{\mu}_2)/(\hat{\mu}_2 - \hat{\mu}_1^2)\) and \(\hat{\beta} = (\hat{\mu}_1 - \hat{\mu}_2)(1 - \hat{\mu}_1)/(\hat{\mu}_2 - \hat{\mu}_1^2)\).

(iv) Note that \(\hat{\mu}_1 = e^{\mu + \sigma^2/2}\) and \(\mu_2 = e^{2\mu + 2\sigma^2}\). Then \(\mu_2/\mu_1 = e^{\sigma^2}\), i.e., \(\sigma^2 = \log(\mu_2/\mu_1^2)\). Then \(\mu = \log(\mu_1 + \sigma^2/2)\). Hence, the moment estimators are \(\hat{\sigma}^2 = \log(\hat{\mu}_2/\hat{\mu}_1^2)\) and \(\hat{\mu} = \hat{\mu}_1 - \frac{1}{2}\log(\hat{\mu}_2/\hat{\mu}_1^2)\).

(v) Note that \(\mu_1 = r/p\) and \(\mu_2 - \mu_1^2 = r(1-p)/p^2\). Then \(r = p\mu_1\) and \((\mu_2 - \mu_1^2)p = \mu_1(1-p)\). Hence, the moment estimators are \(\hat{\rho} = \hat{\mu}_1/(\hat{\mu}_2 - \hat{\mu}_1^2 + \hat{\mu}_1)\) and \(\hat{\sigma} = \hat{\mu}_1^2/(\hat{\mu}_2 - \hat{\mu}_1^2 + \hat{\mu}_1)\).

Exercise 49 (#3.106). In Exercise 11(i), find a moment estimator of \(\theta\) and derive its asymptotic distribution. In Exercise 11(ii), obtain a moment estimator of \(\theta^{-1}\) and its asymptotic relative efficiency with respect to the UMVUE of \(\theta^{-1}\).

Solution. (i) From Exercise 11(i),

\[
\mu_1 = EX_1 = P(Y_1 < 1) + \frac{1}{\theta} \int_1^\theta x dx = \frac{1}{\theta} + \frac{\theta^2 - 1}{2\theta} = \frac{\theta^2 + 1}{2\theta}.
\]

Let \(\bar{X}\) be the sample mean. Setting \(\bar{X} = (\theta^2 + 1)/(2\theta)\), we obtain that \(\theta^2 - 2\bar{X}\theta + 1 = 0\), which has solutions \(\bar{X} = \sqrt{\theta^2 - 1}\). Since \(\bar{X} \geq 1\), \(\bar{X} = \sqrt{\theta^2 - 1} < 1\). Since \(\theta \geq 1\), the moment estimator of \(\theta\) is \(\hat{\theta} = \bar{X} + \sqrt{\theta^2 - 1}\).

From the central limit theorem,

\[
\sqrt{n}(\bar{X} - \mu_1) \rightarrow_d N\left(0, \frac{\theta^3 + 2}{3\theta} - \frac{(\theta^2 + 2)^2}{4\theta^2}\right).
\]

By the \(\delta\)-method with \(g(x) = x + \sqrt{x^2 - 1}\),

\[
\sqrt{n}(\hat{\theta} - \theta) \rightarrow_d N\left(0, \left(1 + \frac{\theta}{\sqrt{\theta^2 - 1}}\right)^2 \left[\frac{\theta^3 + 2}{3\theta} - \frac{(\theta^2 + 2)^2}{4\theta^2}\right]\right).
\]

(ii) From Exercise 11(ii),

\[
\mu_1 = EX_1 = \frac{1}{\theta} \int_0^1 x dx + P(Y_1 > 1) = \frac{1}{2\theta} + 1 - \frac{1}{\theta} = 1 - \frac{1}{2\theta}.
\]
Hence the moment estimator of \(\theta^{-1} \) is \(2(1 - \bar{X}) \). From the central limit theorem,
\[
\sqrt{n}(\bar{X} - \mu_1) \rightarrow_d N \left(0, \frac{1}{3\theta^2} - \frac{1}{4\theta^2} \right).
\]
By the \(\delta \)-method with \(g(x) = 2(1 - x) \),
\[
\sqrt{n}[2(1 - \bar{X}) - \theta^{-1}] \rightarrow_d N \left(0, \frac{4}{3\theta^2} - \frac{1}{\theta^2} \right).
\]
Let \(R_i = 0 \) if \(X_i = 1 \) and \(R_i = 1 \) if \(X_i \neq 1 \). From the solution of Exercise 11(ii), the UMVUE of \(\theta^{-1} \) is \(\bar{R} = n^{-1} \sum_{i=1}^{n} R_i \). By the central limit theorem,
\[
\sqrt{n}(\bar{R} - \theta^{-1}) \rightarrow_d N \left(0, \frac{1}{\theta} - \frac{1}{\theta^2} \right).
\]
Hence, the asymptotic relative efficiency of \(2(1 - \bar{X}) \) with respect to \(\bar{R} \) is equal to \((\theta^{-1}) / (\frac{4}{3} \theta - 1) \).

Exercise 50 (#3.107). Let \((X_1, ..., X_n)\) be a random sample from a population having the Lebesgue density \(f_{\alpha, \beta}(x) = \alpha \beta x^{\alpha - 1} I_{(0, \beta)}(x) \), where \(\alpha > 0 \) and \(\beta > 0 \) are unknown. Obtain a moment estimator of \(\theta = (\alpha, \beta) \) and its asymptotic distribution.

Solution. Let \(\mu_j = E X_1^j \). Note that
\[
\mu_1 = \frac{\alpha}{\beta^\alpha} \int_0^\beta x^\alpha dx = \frac{\alpha \beta}{\alpha + 1}
\]
and
\[
\mu_2 = \frac{\alpha}{\beta^\alpha} \int_0^\beta x^{\alpha + 1} dx = \frac{\alpha \beta^2}{\alpha + 2}.
\]
Then \(\beta = (1 + \frac{1}{\alpha}) \mu_1 \) and
\[
\left(1 + \frac{1}{\alpha} \right)^2 \mu_1^2 = \left(1 + \frac{2}{\alpha} \right) \mu_2,
\]
which leads to
\[
\frac{1}{\alpha} = \frac{\mu_2 - \mu_1^2}{\mu_1^2 - \mu_1 \mu_2} \pm \sqrt{\frac{\mu_2^2 - \mu_1^2}{\mu_1^2} - \mu_1 \mu_2}
\]
Since \(\alpha > 0 \), we obtain the moment estimators
\[
\hat{\alpha} = \frac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2 + \sqrt{\hat{\mu}_2^2 - \hat{\mu}_1 \hat{\mu}_2}}
\]
and
\[
\hat{\beta} = \frac{\hat{\mu}_2 + \sqrt{\hat{\mu}_2^2 - \hat{\mu}_1 \hat{\mu}_2}}{\hat{\mu}_1},
\]
where \(\mu_j = \frac{1}{n} \sum_{i=1}^{n} X_i^j \). Let \(\gamma = (\mu_1, \mu_2) \) and \(\hat{\gamma} = (\hat{\mu}_1, \hat{\mu}_2) \). From the central limit theorem,

\[
\sqrt{n}(\hat{\gamma} - \gamma) \rightarrow_d N(0, \Sigma),
\]

where

\[
\Sigma = \begin{pmatrix}
\mu_2 - \mu_1^2 & \mu_3 - \mu_1 \mu_2 \\
\mu_3 - \mu_1 \mu_2 & \mu_4 - \mu_2^2
\end{pmatrix}.
\]

Let \(\alpha(x, y) = \frac{x^2}{y - x^2 + \sqrt{y^2 - xy}} \) and \(\beta(x, y) = \frac{y + \sqrt{y^2 - xy}}{x} \).

Then

\[
\frac{\partial (\alpha, \beta)}{\partial (x, y)} = \begin{pmatrix}
-\frac{2x}{y - x^2 + \sqrt{y^2 - xy}} + \frac{x^2(y + x/\sqrt{y^2 - xy})}{2(y - x^2 + \sqrt{y^2 - xy})^2} & -\frac{x^2(1 + (y - x/2)/\sqrt{y^2 - xy})}{(y - x^2 + \sqrt{y^2 - xy})^2} \\
-\frac{y}{2x\sqrt{y^2 - xy}} - \frac{y + \sqrt{y^2 - xy}}{x^2} & \frac{1}{x} + \frac{2y - x}{2x\sqrt{y^2 - xy}}
\end{pmatrix}.
\]

Let \(\hat{\theta} = (\hat{\alpha}, \hat{\beta}) \) and \(\Lambda = \frac{\partial (\alpha, \beta)}{\partial (x, y)}|_{x=\mu_1, y=\mu_2} \). Then, by the \(\delta \)-method,

\[
\sqrt{n}(\hat{\theta} - \theta) \rightarrow_d N(0, \Lambda \Sigma \Lambda^T).
\]

Exercise 51 (#3.108). Let \((X_1, ..., X_n)\) be a random sample from the following discrete distribution:

\[
P(X_1 = 1) = \frac{2(1 - \theta)}{2 - \theta}, \quad P(X_1 = 2) = \frac{\theta}{2 - \theta},
\]

where \(\theta \in (0, 1) \) is unknown. Obtain a moment estimator of \(\theta \) and its asymptotic distribution.

Solution. Note that

\[
EX_1 = \frac{2(1 - \theta)}{2 - \theta} + \frac{2\theta}{2 - \theta} = \frac{2}{2 - \theta}.
\]

Hence, a moment estimator of \(\theta \) is \(\hat{\theta} = 2(1 - \bar{X}^{-1}) \), where \(\bar{X} \) is the sample mean. Note that

\[
\text{Var}(X_1) = \frac{2(1 - \theta)}{2 - \theta} + \frac{4\theta}{2 - \theta} - \frac{4}{(2 - \theta)^2} = \frac{4\theta - 2\theta^2 - 4}{(2 - \theta)^2}.
\]

By the central limit theorem and \(\delta \)-method,

\[
\sqrt{n}(\hat{\theta} - \theta) \rightarrow_d N \left(0, \frac{(2 - \theta)^2(2\theta - \theta^2 - 2)}{2} \right).
\]
Exercise 52 (#3.110). Let \((X_1, ..., X_n)\) be a random sample from a population having the Lebesgue density
\[
f_{\theta_1, \theta_2}(x) = \begin{cases}
(\theta_1 + \theta_2)^{-1}e^{-x/\theta_1} & x > 0 \\
(\theta_1 + \theta_2)^{-1}e^{x/\theta_2} & x \leq 0,
\end{cases}
\]
where \(\theta_1 > 0\) and \(\theta_2 > 0\) are unknown. Obtain a moment estimator of \((\theta_1, \theta_2)\) and its asymptotic distribution.

Solution. Let \(\mu_j = E X_j^j\) and \(\hat{\mu}_j = \sum_{i=1}^n X_i^j\). Note that
\[
\mu_1 = \frac{1}{\theta_1 + \theta_2} \left(\int_{-\infty}^0 x e^{x/\theta_2} dx + \int_0^\infty x e^{-x/\theta_1} dx \right) = \theta_1 - \theta_2
\]
and
\[
\mu_2 = \frac{1}{\theta_1 + \theta_2} \left(\int_{-\infty}^0 x^2 e^{x/\theta_2} dx + \int_0^\infty x^2 e^{-x/\theta_1} dx \right) = 2(\theta_1^2 + \theta_2^2 - \theta_1 \theta_2).
\]

Then, \(\mu_2 - \mu_1^2 = \theta_1^2 + \theta_2^2\). Since \(\theta_1 = \mu_1 + \theta_2\), we obtain that
\[
2\theta_2^2 + 2\mu_1 \theta_2 + 2\mu_2^2 - \mu_2 = 0,
\]
which has solutions
\[
-\mu_1 \pm \sqrt{2\mu_2 - 3\mu_1^2}.
\]
Since \(\theta_2 > 0\), the moment estimators are
\[
\hat{\theta}_2 = -\hat{\mu}_1 + \sqrt{2\hat{\mu}_2 - 3\hat{\mu}_1^2}
\]
and
\[
\hat{\theta}_1 = \frac{\hat{\mu}_1 + \sqrt{2\hat{\mu}_2 - 3\hat{\mu}_1^2}}{2}.
\]

Let \(g(x, y) = (\sqrt{2y - 3x} - x)/2\) and \(h(x, y) = (\sqrt{2y - 3x} + x)/2\). Then
\[
\frac{\partial(g, h)}{\partial(x, y)} = \begin{pmatrix} -\frac{1}{2} - \frac{3}{4\sqrt{2y - 3x}} & \frac{1}{2\sqrt{2y - 3x}} \\
\frac{3}{4\sqrt{2y - 3x}} & \frac{1}{2}\end{pmatrix}.
\]

Let \(\gamma = (\mu_1, \mu_2)\), \(\hat{\gamma} = (\hat{\mu}_1, \hat{\mu}_2)\), \(\theta = (\theta_1, \theta_2)\), and \(\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2)\). From the central limit theorem,
\[
\sqrt{n}(\hat{\gamma} - \gamma) \to_d N(0, \Sigma),
\]
where \(\Sigma\) is as defined in the solution of Exercise 50. By the \(\delta\) method,
\[
\sqrt{n}(\hat{\theta} - \theta) \to_d N(0, \Lambda\Sigma\Lambda^\tau),
\]
Chapter 3. Unbiased Estimation

where \(\Lambda = \frac{\partial(g,h)}{\partial(x,y)}|_{x=\mu_1, y=\mu_2}. \)

Exercise 53 (#3.111). Let \((X_1, ..., X_n)\) be a random sample from \(P\) with discrete probability density \(f_{\theta,j}\), where \(\theta \in (0,1), j = 1, 2, f_{\theta,1}\) is the Poisson distribution with mean \(\theta\), and \(f_{\theta,2}\) is the binomial distribution with size 1 and probability \(\theta\). Let \(h_k(\theta, j) = E_{\theta,j}(X_i^k), k = 1, 2,\) where \(E_{\theta,j}\) is the expectation is with respect to \(f_{\theta,j}\). Show that
\[
\lim_{n} P(\hat{\mu}_k = h_k(\theta, j) \text{ has a solution}) = 0
\]
when \(X_i\)'s are from the Poisson distribution, where \(\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k, k = 1, 2.\)

Solution. Note that \(h_1(\theta, 1) = h_1(\theta, 2) = \theta\). Hence \(h_1(\theta, j) = \hat{\mu}_1\) has a solution \(\theta = \hat{\mu}_1\). Assume that \(X_i\)'s are from the Poisson distribution with mean \(\theta\). Then \(\hat{\mu}_2 \rightarrow_p \theta + \theta^2.\) Since \(h_2(\theta, 1) = \theta - \theta^2,\)
\[
\lim_{n} P(\hat{\mu}_2 = h_2(\theta, 1)) = 0.
\]
It remains to show that
\[
\lim_{n} P(\hat{\mu}_2 = h_2(\theta, 2)) = 0.
\]
Since \(h_2(\theta, 2) = \theta + \theta^2\) and \(\theta = \hat{\mu}_1\) is a solution to the equation \(h_1(\theta, 1) = h_1(\theta, 2) = \theta,\) it suffices to show that
\[
\lim_{n} P(\hat{\mu}_2 = \hat{\mu}_1^2) = 0.
\]
Let \(\gamma = (\mu_1, \mu_2)\) and \(\hat{\gamma} = (\hat{\mu}_1, \hat{\mu}_2).\) From the central limit theorem,
\[
\sqrt{n} (\hat{\gamma} - \gamma) \to_d N(0, \Sigma),
\]
where \(\Sigma\) is as defined in the solution of Exercise 50. Then, we only need to show that \(\Sigma\) is not singular. When \(X_1\) has the Poisson distribution with mean \(\theta,\) a direct calculation shows that \(\mu_1 = \theta, \mu_2 = \theta + \theta^2, \mu_3 = \theta + 3\theta^2 + \theta^3,\)
and \(\mu_4 = \theta + 7\theta^2 + 6\theta^3 + \theta^4.\) Hence,
\[
\Sigma = \begin{pmatrix}
\theta & \theta + 2\theta^2 \\
\theta + 2\theta^2 & \theta + 6\theta^2 + 4\theta^3
\end{pmatrix}.
\]
The determinant of \(\Sigma\) is equal to
\[
\theta^2 + 6\theta^3 + 4\theta^4 - (\theta + 2\theta^2)^2 = 2\theta^3 > 0.
\]
Hence \(\Sigma\) is not singular.

Exercise 54 (#3.115). Let \((X_1, ..., X_n)\) be a random sample from a population on \(\mathcal{R}\) having a finite sixth moment. Consider the estimation of \(\mu^3,\)
where $\mu = EX_1$. Let \bar{X} be the sample mean. When $\mu = 0$, find the asymptotic relative efficiency of the V-statistic \bar{X}^3 with respect to the U-statistic $U_n = \frac{1}{\binom{n}{3}} \sum_{1 \leq i < j < k \leq n} X_i X_j X_k$.

Solution. We adopt the notation in Exercise 25. Note that U_n is a U-statistic with $\zeta_1 = \zeta_2 = 0$, since $\mu = 0$. The order of the kernel of U_n is 3. Hence, by Exercise 25(iii),

$$\text{Var}(U_n) = \frac{6\zeta_3}{n^3} + O\left(\frac{1}{n^4}\right),$$

where $\zeta_3 = \text{Var}(X_1 X_2 X_3) = E(X_1^2 X_2^2 X_3^2) = \sigma^6$ and $\sigma^2 = EX_1^2 = \text{Var}(X_1)$.

The asymptotic mean squared error of U_n is then $6\sigma^6/n^3$.

From the central limit theorem and $\mu = 0$, $\sqrt{n} \bar{X} \rightarrow_d N(0, \sigma^2)$. Then $n^{3/2} \bar{X}^3 / \sigma^3 \rightarrow_d Z^3$, where Z is a random variable having distribution $N(0, 1)$. Then the asymptotic mean square error of \bar{X}^3 is σ^6EZ^6/n^3. Note that $EZ^6 = 15$. Hence, the asymptotic relative efficiency of \bar{X}^3 with respect to U_n is $6/15 = 2/5$. \blacksquare