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Consider a large number of detectors each generating a data
stream. The task is to detect online, distribution changes in a small
fraction of the data streams. Previous approaches to this problem
include the use of mixture likelihood ratios and sum of CUSUMs. We
provide here extensions and modifications of these approaches that
are optimal in detecting normal mean shifts. We show how the (opti-
mal) detection delay depends on the fraction of data streams under-
going distribution changes as the number of detectors goes to infinity.
There are three detection domains. In the first domain for moderately
large fractions, immediate detection is possible. In the second do-
main for smaller fractions, the detection delay grows logarithmically
with the number of detectors, with an asymptotic constant extend-
ing those in sparse normal mixture detection. In the third domain
for even smaller fractions, the detection delay lies in the framework
of the classical detection delay formula of Lorden. We show that the
optimal detection delay is achieved by the sum of detectability score
transformations of either the partial scores or CUSUM scores of the
data streams.

1. Introduction. Consider N data streams withXnt the observation of
the nth data stream at time t. We want to detect as quickly as we can a possi-
ble change-point ν ≥ 1, such that for some N ⊂ {1, . . . , N}, the post-change
observations Xnt for n ∈ N (and t ≥ ν) have distributions different from
the pre-change observations. Applications for this multi-stream sequential
change-point detection problem include hospital management, infectious-
disease modeling and target detection.

Tartakovsky and Veervallli [19] consider distributed decision-making and
optimal fusion, with minimax, uniform and Bayesian formulations for se-
quential detection in multi-stream data. Though optimal detection is achieved,
the asymptotics involve N fixed as the average run lengths go to infinity.

Mei [13] considers distribution changes that do not affect all data streams,
and recommends a sum of CUSUM approach. The advantages of his ap-
proach are that the distribution changes are not assumed to have occurred
simultaneously, and the efficient computation of his stopping rule. However
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2 HOCK PENG CHAN

as has been shown in an earlier simulation study, the detection delay is rel-
atively large when #N , the number of data streams undergoing change, is
small.

Xie and Siegmund [20] are the first to look from the perspective of #N
small. They suggest a mixture likelihood ratio (MLR) approach and show
via simulation studies the superiority of their MLR stopping rules in detect-
ing over a wide range of #N , compared to other known approaches. They
also provide analytical approximations to average run lengths and detection
delays of their stopping rules that are accurate and useful. However they do
not give any small or moderate #N optimality theory.

In parallel developments, motivated by applications in DNA copy-number
samples, there have been advances made, see Siegmund, Yakir and Zhang
[18], Jeng, Cai and Li [9] and Chan and Walther [4], on fixed-sample change-
point detection in multiple sequences having a common location index. The
work here also has connections with detection on spatial indices, see [1, 2, 3].

In this paper we show that subject to an average run length constraint,
a modified version of the MLR stopping rule achieves minimum detection
delay, extending the classical single-stream optimal detection of Lorden [11],
Pollak [15, 16] and Moustakides [14] to multiple data streams, in the detec-
tion of normal mean shifts. In Section 2 we provide the asymptotic lower
bounds of the detection delays for different domains of N . Under the first
domain for large #N , the lower bound is trivially given by 1. Under the
second domain for moderate #N , the lower bound grows logarithmically
with N . Under the third domain for small #N , the detection delay grows
polynomially with N . In Section 3 we show that a MLR stopping rule that
tests against the limits of detectability achieves optimal detection on all
three domains. A window-limited rule, suggested in Lai [10], is incorporated
into the stopping rule for computational savings. In Section 4 a numerical
study is performed to provide justification for using the MLR stopping rule
for finite N . In Section 5 we extend the idea of testing against the limits
of detectability on Mei’s sum of CUSUM test. Rather than summing the
CUSUM scores as in Mei [13], we suggest instead to sum the detectability
score transformations of the CUSUM scores. Optimality of this procedure
is shown but it occurs only when we select the assumed mean shift at a
specific value between one to two times the true mean shift, surprisingly
not at the true mean shift itself. In Sections 6–8 we provide the proofs of
Theorems 1–3.

2. Detection delay lower bound. Let Xnt, 1 ≤ n ≤ N , t ≥ 1, be
distributed as independent N(µnt, 1). Assume that at some unknown time
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ν ≥ 1, there are mean shifts in a subset N of the data streams. More
specifically we assume that

(2.1) µnt = µI{t≥ν,n∈N} for some µ > 0,

with I{1∈N}, . . . , I{N∈N} i.i.d. Bernoulli(p) for some 0 < p < 1. We shall let
Pν (Eν) denote probability measure (expectation) with respect to distribu-
tion changes at time ν, with ν = ∞ indicating no change. In Appendix B
we provide an analogue of Theorem 1 below on a minimax formulation of
the problem, with a constraint on

∑N
n=1 I{n∈N} instead of assuming I{n∈N}

to be i.i.d. Bernoulli.
A standard measure of the performance of a stopping rule T , see Pollak

[15, 16], is the (expected) detection delay

(2.2) DN (T ) := sup
1≤ν<∞

Eν(T − ν + 1|T ≥ ν),

subject to the constraint that ARL(T ) (:=E∞T ) ≥ γ for some γ ≥ 1.
In this section we find (asymptotic) lower bounds of DN (T ) under the

conditions that as N → ∞,

log γ ∼ N ζ for some 0 < ζ < 1,(2.3)

p ∼ N−β for some 0 < β < 1.(2.4)

In Sections 3 and 5, we devise optimal detectability score stopping rules
that achieve this lower bound. In Theorem 1 below, only β > 1−ζ

2 is consid-

ered. For β < 1−ζ
2 , the detectability score stopping rules achieve asymptotic

detection delay of 1, and are hence optimal.
For 1−ζ

2 < β < 1− ζ, the detection delay lower bound grows logarithmi-
cally with N . The proportionality constant is

ρ(β, ζ) =

{
β − 1−ζ

2 if 1−ζ
2 < β ≤ 3(1−ζ)

4 ,

(
√
1− ζ −

√
1− ζ − β)2 if 3(1−ζ)

4 < β < 1− ζ.

This is a two-dimensional extension of the Donoho-Ingster-Jin constants
ρ(β) := ρ(β, 0), which has appeared in connection with sparse normal mix-
ture detection, see [5, 7, 8]. The extension results from the additional dif-
ficulty of detecting a normal mean shift when there are multiple compar-
isons, here for sequential change-point detection, and in [4] for fixed-sample
change-point detection.

Theorem 1. Let T be a stopping rule such that ARL(T ) ≥ γ, with γ
satisfying (2.3).
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(a) If (2.4) holds with 1−ζ
2 < β < 1− ζ, then

(2.5) lim inf
N→∞

DN (T )

logN
≥ 2µ−2ρ(β, ζ).

(b) If (2.4) holds with β > 1− ζ, then

(2.6) lim inf
N→∞

logDN (T )

logN
≥ β + ζ − 1.

The phase transition between logarithmic and polynomial growth of the
detection delay boundary is at N1−β = N ζ , that is, at #N .

= log γ. By
Theorem 1(a), for larger #N the detection delay lower bound grows at a
logN rate. By Theorem 1(b), for smaller #N the lower bound is roughly
(log γ)/#N . The detection delay lower bound in the logarithmic domain
[Theorem 1(a)] is closely linked to the Donoho-Ingster-Jin detection bound-
ary for sparse normal mixture detection, whereas the lower bound in the
polynomial domain [Theorem 1(b)] lies in the framework of the classical
lower bound established by Lorden (1971) for N fixed as γ → ∞.

We shall first establish the connection between Theorem 1(a) and the
Donoho-Ingster-Jin detection boundary

√
2ρ(β) logN . Let t ≥ ν ≥ 1 and

k = t− ν + 1. If p ∼ N−β, 1
2 < β < 1, then as

k−1/2
t∑

i=ν

Xni ∼
{

N(0,1) under P∞,

(1− p)N(0, 1) + pN(µ
√
k, 1) under Pν ,

1 ≤ n ≤ N,

sparse normal mixture detection theory dictates that k should satisfy

µ
√
k ≥ [1 + o(1)]

√
2ρ(β) logN (i.e. k ≥ [2µ−2ρ(β) + o(1)] logN),

in order for it to be possible that the sum of Type I and II error probabilities
goes to zero, when testing Pν against P∞ with observations up to time t.
By (2.2) this leads to

(2.7) DN (T ) ≥ [2µ−2ρ(β) + o(1)] logN,

for any stopping rule T satisfying ARL(T ) ≥ γ with γ/ logN → ∞. What
Theorem 1(a) says is that under (2.3) with ζ small enough (< 1− β), logN
detection is still possible with a larger asymptotic constant.

The link between Theorem 1(b) and the classical lower bound formula of
Lorden is best established via the inequality in Mei [12, Prop 2.1], that for
N fixed,

(2.8) DN (T ) ≥ 2µ−2 log γ
#N +O(1) as γ → ∞.
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Theorem 1(b) says that for log γ ≫ #N (∼ N1−β), the right-hand side
of (2.8) gives the correct order for the attainable detection delay. When
#N ≫ log γ, the right-hand side of (2.8) does not provide the correct order
for the attainable detection delay as we have already noted in the previous
paragraph situations under which a logN detection delay is required. There-
fore the O(1) in (2.8) is more appropriately O(logN), if the dependence on
N in O(1) is made explicit. What Theorem 1 also says is that the transition
is sharp. Once we get out of the classical (log γ)/(#N ) domain, we fall into
the logN domain, there are no intermediate asymptotics.

3. Optimal detection using detectability score. The detectability
score stopping rule is motivated by the MLR stopping rules of Xie and
Siegmund [20]. In their formulation Xie and Siegmund consider firstly the
ideal situation in which p and µ are known. The most powerful test at time
t, for testing the hypothesis that change-point ν = s for some s ≤ t, is the
log likelihood ratio

ℓ•st :=
N∑

n=1

ℓnst, where ℓnst = log(1− p+ peµSnst−kµ2/2),

with k = t− s+ 1 and Snst =
∑t

i=sXni.
Since the change-point ν is unknown, they suggest to maximize ℓ•st over s.

The unknown µ (or more precisely µn) in ℓnst is substituted by S+
nst/k, and

a small p0 is substituted for the unknown p. In summary their stopping rule
can be expressed as

(3.1) TXS(p0) = inf
{
t : max

k=t−s+1∈K
ℓ̂•st(p0) ≥ b

}
,

where ℓ̂•st(p0) =
∑N

n=1 ℓ̂nst(p0) and

ℓ̂nst(p0) = log(1− p0 + p0e
(Z+

nst)
2/2), Znst = Snst/

√
k.

The set K in (3.1) refers to a pre-determined set of window sizes. By applying
nonlinear renewal theory, Xie and Siegmund derive accurate analytical ap-
proximations of ARL(T ) and DN (T ) for T = TXS(p0) and related stopping
rules.

Our stopping rule is also a mixture likelihood ratio but based instead on
the limits of detectability. Let

(3.2) TS(p0) = inf
{
t : max

k=t−s+1∈K

N∑
n=1

g(Z+
nst) ≥ b

}
,
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where g(z) = log[1 + p0(λe
z2/4 − 1)] and λ = 2(

√
2− 1). Following Lai [10],

we consider window sizes

(3.3) K = {1, . . . , k1} ∪ {⌊rjk1⌋ : j ≥ 1}, k1 ≥ 1, r > 1.

Theorem 2. Consider stopping rule TS(p0), 0 < p0 ≤ 1, with window
sizes (3.3). If ARL(TS(p0)) = γ, then threshold b ≤ log(4γ2 + 2γ). In addi-
tion, if (2.3), (2.4) hold and k1/ logN → ∞, p0 = c[(log γ)/N ]1/2 for some
c > 0, then the following hold as N → ∞.

(a) If β < 1−ζ
2 , then DN (TS(p0)) → 1.

(b) If 1−ζ
2 < β < 1− ζ, then

(3.4)
DN (TS(p0))

logN
→ 2µ−2ρ(β, ζ).

(c) If β > 1− ζ, then

logDN (TS(p0))

logN
→ β + ζ − 1.

Remarks. Instead of (2.3), we can model γ growing slowly with N by
assuming that

(3.5) γ/ logN → ∞, log γ = o(N ϵ) for all ϵ > 0.

Consider the stopping rule TS(p0) with p0 = cN− 1
2 for some c > 0. Under

(2.4) and (3.5), the asymptotic (3.4) holds with ζ = 0, and the stopping rule
is optimal in view of (2.7).

We shall provide some intuition here on the detectability score transfor-
mation g. Consider an i.i.d sample Z1, . . . , ZN that is distributed as N(0,1)
under the null hypothesis H0. If wN → ∞ with wN = o(

√
logN), then

#{n : Zn ≥ wN}/N is asymptotically normal with mean αN and variance
αN/N , where αN = P0{Zn ≥ wn} =

∫∞
wN

(2π)−1/2e−z2/2dz.

Therefore under any alternative hypothesis H1,
√
αN/N is the minimum

deviation of P1{Zn ≥ wN} from αN that is detectable. Since αN is essen-
tially e−w2

N/2 (up to logarithmic terms), the minimum detectable deviation

is e−w2
N/4/

√
N . That is, a mixture of N(0,1) and a small p0 = cN− 1

2 fraction
of N(0,2) is at the threshold of detectability. The detectability score trans-
formation g is essentially the likelihood ratio between the mixture with p0
fraction N(0,2), and the null distribution. The factor (log γ)1/2 in the opti-
mal choice of p0 in the statement of Theorem 2 adjusts for the additional
difficulty of each detection due to the multiple comparison effects of large γ.
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N = 100 N = 104

Test b ARL b ARL

max 12.8 5041 15.9 4930
Mei 88.5 (106.8) 4997 5640 (8722) 4909

Mei(N− 1
2 ) 3.48 (9.81) 4994 3.03 (8.93) 4973

Mei(3N− 1
2 ) 5.02 (9.61) 4976 2.31 (6.97) 5017

S(N− 1
2 ) 4.25 (18.42) 5066 14.49 (18.42) 5121

S(3N− 1
2 ) 6.30 (18.42) 5195 17.21 (18.42) 4986

Table 1
Thresholds b for stopping rules calibrated to ARL

.
= 5000. The upper bounds of the

thresholds, as given in the statement of Theorems 2 and 3, are in brackets.

It is straightforward to check that the detectability score
∑N

n=1 g(Z
+
nst)

in (3.2) is indeed the log likelihood ratio for testing Z+
1st, . . . , Z

+
Nst i.i.d.

N(0,1)+ [the distribution of Z+ when Z ∼ N(0,1)] against the alternative
that Z+

1st, . . . , Z
+
Nst are i.i.d.

(1− p0)N(0, 1)+ + p0[
λ√
2
HN(0, 2) + (1− λ√

2
)δ0],

where δ0 denotes a point mass at zero and HN(0,2) the half-normal distribu-
tion with density π−1/2e−z2/4 on z > 0. The value λ = 2(

√
2− 1) is chosen

for convenience, so that g is continuous at 0. The optimality of TS(p0) in
Theorem 2 does not require the selection of this specific λ.

4. Numerical study. In addition to (3.1), Xie and Siegmund introduce
the stopping rule

(4.1) TLR(p0) = inf
{
t : max

k=t−s+1∈K

N∑
n=1

(µ0Snst − kµ2
0/2 + log p0)

+ ≥ b
}
.

This like (3.1) is motivated by the most powerful likelihood ratio test, but
with µ substituted by a pre-determined µ0 rather than S+

nst/k. It bears
resemblance to Mei’s stopping rule

(4.2) TMei = inf
{
t :

N∑
n=1

max
0<s≤t

(µ0Snst − kµ2
0/2)

+ ≥ b
}
,

with the important difference of an additional log p0 term in (4.1) that sup-
presses the contributions of low scoring data streams.

Another key difference is that the sum lies outside the max in (4.2)
whereas in TLR (and TXS, TS), the sum lies inside the max. This confers
advantage to Mei’s stopping rule when the change-point ν (or νn) differs
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#N
Test 1 3 5 10 30 50 100

max 25.5 18.1 15.5 12.6 9.6 8.6 7.2
XS(1) 52.3 18.7 12.2 6.7 3.0 2.3 2.0
XS(0.1) 31.6 14.2 10.4 6.7 3.5 2.8 2.0
LR(0.1) 29.1 13.4 9.8 7.1 4.6 4.0 3.4
LR(1) 82.0 27.2 15.5 6.8 3.0 2.3 2.0
Mei 53.2 23.0 15.7 9.6 4.9 3.8 3.0

Mei(0.1) 26.4 14.6 10.8 7.7 4.5 3.4 2.3
Mei(0.3) 34.3 15.9 11.8 7.6 4.1 3.1 2.0
S(0.1) 26.8 13.4 9.6 6.4 2.8 2.0 1.1
S(0.3) 32.6 14.0 9.5 5.6 2.3 1.5 1.0

s.e. 0.9 0.3 0.1 0.1 0.1 0.1 0.1
Table 2

Detection delays when #N (out of N = 100) data streams undergo distribution changes.
Entries in the last row are standard error upper bounds.

across data streams. We investigate this in Section 5 where we also propose
an extension of Mei’s stopping rule, denoted by TMei(p0), that like (4.1)
weighs down the contributions from non-signal data streams.

In our numerical study, we benchmark the detectability score stopping
rule against the above stopping rules and the max rule

(4.3) Tmax = inf{t : max
0<s≤t

max
1≤n≤N

(Z+
nst)

2/2 ≥ b}.

As in [20], we select N = 100, µ = 1 and #N ranging from 1 to 100. The
thresholds b are calibrated to average run length 5000. The set of window
sizes chosen is K = {1, . . . , 200}, and for Mei’s stopping rule and TLR we
select µ0 = 1.

We consider p0 = 0.1(= N− 1
2 ) for the detectability score stopping rule

TS , corresponding to the optimal choice under (3.5). Another selection is
p0 = 0.3{ .= [(log γ)/N ]1/2}, which is optimal under (2.3). It is interesting

that in [20], the “optimal” p0 = N− 1
2 is chosen for TXS and TLR in the

numerical study.
We conduct 500 Monte Carlo trials for the estimation of each average

run length and detection delay. The thresholds for the stopping rules are in
Table 1, the detection delays in Table 2. In Table 2 the simulation outcomes
below the horizontal line are new, the outcomes above are reproduced from
[20, Table 5].

We see that with a few understandable exceptions, the detectability score
stopping rules TS(0.1) and TS(0.3) have smaller detection delays compared
to their competitors over the full range of #N . This justifies the application
of the detectability score stopping rules for a relatively small N = 100.
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#N
Test 1 10 102 103 104

max 32.7 18.6 13.9 11.1 9.4
Mei 246.5 46.7 12.0 4.0 1.0

Mei(0.01) 39.7 16.7 8.8 4.0 2.0
Mei(0.03) 53.7 18.6 9.0 4.0 2.0
S(0.01) 37.7 13.3 4.5 1.0 1.0
S(0.03) 49.3 13.7 3.9 1.0 1.0

s.e. 4.0 0.3 0.1 0.1 0.1
Table 3

Detection delays when #N (out of N = 104) data streams undergo distribution changes.
Entries in the last row are standard error upper bounds.

Following the recommendation of a referee, we conduct a second numerical
exercise for a larger N = 104, with #N ranging from 1 to 104. As in the
earlier simulation study, we select µ = µ0 = 1, ARL = 5000 and K =
{1, . . . , 200}. The detection thresholds are in Table 1, the detection delays
in Table 3. We see again that except for #N = 1 when Tmax is superior,
the detection score stopping rules TS(p0) for p0 = 0.01(= N− 1

2 ) and 0.03
{ .= [(log γ)/N ]1/2} have the smallest detection delays.

5. Detectability of Mei’s stopping rule. As mentioned earlier there
is no implicit assumption that the distribution changes occur simultaneously
when applying Mei’s stopping rule (4.2). Another advantage is the efficient
recursive computation of the stopping rule. However this recursive compu-
tation comes with the price of information loss. In this section we improve
Mei’s stopping rule by applying a detectability score transformation on each
CUSUM score. Due to the information loss, optimality is possible only for
specific µ0.

Let Rnt be the CUSUM score of the nth detector at time t, satisfying

(5.1) Rn0 = 0, Rnt = (Rn,t−1 + µ0Xnt − µ2
0/2)

+, t ≥ 1.

Define

(5.2) TMei(p0) = inf
{
t :

N∑
n=1

gM (Rnt) ≥ b
}
,

with the detectability score transformation

(5.3) gM (x) = log[1 + p0(λMex/2 − 1)], λM > 0.

This is an extension of Mei’s test, for TMei(1) is equivalent to TMei. Let
ξ = limt→∞E∞eRnt/2 and define

DN,k(T ) = sup
k≤ν<∞

Eν(T − ν + 1|T ≥ ν).
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µ Mei Mei(0.1) Mei(0.3) S(0.1) S(0.3)

0.5 20.7 21.2 20.6 23.0 20.7
0.7 15.5 15.4 15.1 16.0 14.9
1.0 11.9 10.9 11.1 10.9 10.4
1.3 10.0 8.7 9.0 8.0 7.9

Table 4
Detection delays for staggered distribution changes. The standard errors are not more

than 0.2.

Theorem 3. Consider stopping rule TMei(p0), 0 < p0 ≤ 1. Let u =
log[1+p0(λMξ−1)]. If ARL(TMei(p0)) = γ, then threshold b ≤ Nu+log(4γ).
In addition, if (2.3), (2.4) hold and p0 = c[(log γ)/N ]1/2 for some c > 0, then
the following hold as N → ∞.

(a) If 1−ζ
2 < β ≤ 3(1−ζ)

4 and µ0 = 2µ, then

(5.4)
DN,KN

(TMei(p0))

logN
→ 2µ−2ρ(β, ζ),

for KN = 2µ−2(1− ζ − β) logN .

(b) If 3(1−ζ)
4 < β < 1− ζ and µ0 = µ

√
1−ζ
ρ(β,ζ) , then (5.4) holds for KN =

2µ−2ρ(β, ζ) logN .

Remarks. 1. In Theorem 3 “optimality” occurring when µ0 > µ is a
consequence of a small subset of N dominating the score contributions,
after the detectability score transformations have been applied.

2. Notice the weaker (5.4) instead of (3.4). The extra initial delay is needed
for the CUSUM scores RnT for n ̸∈ N to reach their stationary values and
not pull down the total score. In that sense the detection delay criterion may
be disadvantageous to the extended Mei’s stopping rule (and hence Mei’s
test stopping rule itself) since in practice we seldom expect the change-point
ν to be that close to 0.

To highlight the unique characteristics of the extended Mei’s stopping
rule (5.2) in dealing with staggered change-points, we conduct a numerical
study with µnt = µI{t≥n} in place of (2.1). That is the nth data stream
undergoes a distribution change at time n. As in Section 4 the stopping
rules are calibrated to average run length of 5000, for N = 100 detectors,
and with µ0 = 1. The thresholds b for TMei(p0) are in Table 1 (Section 4),
the detection delays in Section 4. We select λM = 0.64, this will be explained
later. By detection delay we shall mean the expected stopping time when
µnt = µI{t≥n}.
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We see from Tables 2 (Section 4) and 4 that TMei(0.1) and TMei(0.3) have
smaller detection delays compared to TMei, almost uniformly over #N and
µ. In Table 3 (for N = 104), TMei(0.01) and TMei(0.03) are superior to TMei

for #N ≤ 100. Hence applying detectability score transformations on the
CUSUM scores improves Mei’s stopping rule in general, the noise suppression
on data streams that do not undergo distribution change is indeed effective.
In Table 4 we see that in general TS(p0) performs better than TMei(p0)
when µ ≥ 1 but the reverse is true when µ < 1. This is consistent with the
prediction in Theorem 3 of TMei(p0) performing better for µ < µ0.

We end this section with explanations of the choice of the detectability
score transformation (5.3) and choice of λM . It follows from renewal theory,
see for example Siegmund [17, eq8.49], that

(5.5) lim
t→∞

P∞{Rnt ≥ x} ∼ αe−x as x → ∞,

for α = 2µ−2
0 exp[−2

∑∞
j=1 j

−1Φ(−µ0
√
j/2)]. Therefore the tails of Rnt under

P∞ are like that of an i.i.d. sample from G1 := (1− α)δ0 + αExp(1), where
δ0 denotes a point mass at 0 and Exp(θ) the exponential distribution with
mean θ.

For large x (smaller than logN) and t, #{n : Rnt ≥ x}/N is asymp-
totically normal with mean αe−x and variance αe−x/N . Hence the mini-
mum detectable difference of P{Rnt ≥ x} is e−x/2/

√
N . The distribution

at the limit of detectability is therefore G∗ := (1 − p0)G1 + p0G2, where

G2 = (1−ω)δ0 +ωExp(2) for some 0 < ω < 1, and p0 is of order N− 1
2 . The

detectability score transformation gM [see (5.3)], with λM = 1
1+α(= 0.64 for

µ0 = 1), is the log likelihood ratio between G∗ and G1, with ω selected so
that gM is continuous at 0. We emphasize however that this is for conve-
nience, optimality in Theorem 3 is not restricted to this choice of λM .

6. Proof of Theorem 1. To help the reader, we summarize below the
definitions of the probability measures used in the proofs of Theorems 1–3
in this and the next two sections.

1. Ps (Es): This is the probability measure (expectation) under which an
arbitrarily chosen data stream has probability (1−p) that all observa-
tions are (i.i.d.) N(0,1), and probability p that observations are N(0,1)
before time s, N(µ,1) at and after time s. In particular, if

(a) s = ∞, then with probability 1 all observations are N(0,1).

(b) s = 1, then an arbitrarily chosen data stream has probability
(1−p) that all observations are N(0,1), and probability p that all
observations are N(µ,1).
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12 HOCK PENG CHAN

2. P (E): This is the probability measure (expectation) under which
Y, Y1, Y2, . . . are i.i.d. N(0,1) random variables.

We preface the proof of Theorem 1 with the following lemmas. Lemma 1
is well-known, see for example (3.3) of Lai [10].

Lemma 1. Let k ≥ 1. If T is a stopping rule such that E∞T ≥ γ, then
P∞{T ≥ s+ k|T ≥ s} ≥ 1− k/γ for some s ≥ 1.

Recall the sum Snst =
∑t

i=sXni and the log likelihood ratio

ℓ•st =
N∑

n=1

ℓnst, where ℓnst = log(1− p+ peµSnst−kµ2/2), k = t− s+ 1.

Lemma 2. If we can find b(= bN ) and k(= kN ) such that

P∞{ℓ•1k ≥ b}(= P∞{ℓ•st ≥ b}) ≥ k/γ,(6.1)

P1{ℓ•1k ≥ b}(= Ps{ℓ•st ≥ b}) → 0,(6.2)

then DN (T ) ≥ [1 + o(1)]k for any stopping rule T satisfying E∞T ≥ γ.

Proof. Let T satisfies E∞T ≥ γ, and let b, k satisfy (6.1) and (6.2). By
Lemma 1 we can find s satisfying

(6.3) P∞{T ≥ s+ k|T ≥ s} ≥ 1− k/γ.

Let P ∗
∞{·} = P∞{·|T ≥ s} and P ∗

s {·} = Ps{·|T ≥ s}.
Let t = s+ k − 1, and consider the test, conditioned on T ≥ s, of

H0 : Xnu ∼ N(0,1) for 1 ≤ n ≤ N, 1 ≤ u ≤ t,
vs Hs : Xnu ∼ N(µI{u≥s,n∈N}, 1) for 1 ≤ n ≤ N, 1 ≤ u ≤ t,

with I{n∈N} ∼ Bernoulli(p).

By (6.3) the test “reject H0 if T < s + k, accept H0 otherwise” has Type
I error probability not exceeding k/γ. By (6.1) the likelihood ratio test
rejecting H0 when ℓ•st exceeds b has Type I error probability at least k/γ,
and hence by the Neyman-Pearson Lemma, it is at least as powerful as the
test based on T . That is

(6.4) P ∗
s {ℓ•st ≥ b} ≥ P ∗

s {T < s+ k}.

A key observation here is that the conditioning on {T ≥ s} does not affect
the distribution of Xnu for u ≥ s under either H0 or Hs. Therefore by (6.4),

DN (T ) ≥ Es(T − s+ 1|T ≥ s) ≥ kP ∗
s {T ≥ s+ k}
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≥ kP ∗
s {ℓ•st < b} = kPs{ℓ•st < b},

and we conclude DN (T ) ≥ [1 + o(1)]k from (6.2). ⊓⊔

Lemma 3. If k is such that log k = o(N ζ) and

(6.5) P1{ℓ•1k ≥ 2N ζ/3} → 0,

then (6.1) and (6.2) follow from selecting b satisfying

(6.6) P1{2N ζ/3 ≥ ℓ•1k ≥ b} = exp(−N ζ/4).

Proof. It follows from (6.5) and (6.6) that (6.2) holds. Moreover since
ℓ•1k is the log change of measure between P1 and P∞ at time k,

P∞{ℓ•1k ≥ b} ≥ P∞{2N ζ/3 ≥ ℓ•1k ≥ b}
= E1(e

−ℓ•1kI{2Nζ/3≥ℓ•1k≥b}) ≥ exp(−2N ζ/3)P1{2N ζ/3 ≥ ℓ•1k ≥ b},

and (6.1) follows from (6.6) since log(γ/k) ∼ N ζ . ⊓⊔

In view of Lemmas 2 and 3, to prove Theorem 1 it suffices to check (6.5)
for

(6.7) k =

{
⌊(1− δ)2µ−2ρ(β, ζ) logN⌋ if 1−ζ

2 < β < 1− ζ,
⌊δNβ+ζ−1⌋ if β > 1− ζ,

with δ > 0 small. Motivations behind the above choices of k are given in
Appendix A.

Let Znk = Sn1k/
√
k and

(6.8) ℓnk(= ℓn1k) = log(1− p+ peZnkµ
√
k−kµ2/2).

Note that Znk, 1 ≤ n ≤ N , are i.i.d. N(0,1) under P∞, and i.i.d. (1 −
p)N(0,1)+pN(µ

√
k,1) under P1. More specifically, Znk has the distribution

of Y ∼ N(0,1) if n ̸∈ N , and the distribution of Y + µ
√
k if n ∈ N . Hence

conditioned on n ̸∈ N , ℓnk has the distribution of

(6.9) ℓ0 = log(1− p+ peY µ
√
k−kµ2/2),

whereas conditioned on n ∈ N , ℓnk has the distribution of

(6.10) ℓ1 = log(1− p+ peY µ
√
k+kµ2/2).
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Case 1: 1−ζ
2 < β < 1− ζ. Let ℓ̃nk = ℓnkI{Znk≤ωN}, where

ωN =
√
2(1− ζ) logN + 2 log logN.

We shall check on two sub-cases that

µ̃ := E1ℓ̃nk = o(N ζ−1),(6.11)

sup
1≤n≤N

ℓ̃+nk = O(1),(6.12)

E1ℓ̃
2
nk = o(N ζ−1),(6.13)

P1{Znk > ωN} = o(N ζ−1/ logN).(6.14)

Note that by (6.14) and max1≤n≤N Znk = Op(
√
logN),

(6.15)
N∑

n=1

ℓnkI{Znk>ωN} = op(N
ζ/
√
logN).

Recall that ℓ•1k =
∑N

n=1 ℓnk and let ℓ̃•1k =
∑N

n=1 ℓ̃nk. By Chebyshev’s
inequality and (6.13),

P1{ℓ̃•1k −Nµ̃ ≥ N ζ/2} ≤ N−ζE1(ℓ̃•1k −Nµ̃)2(6.16)

= N−ζ+1E1(ℓ̃nk − µ̃)2 ≤ N−ζ+1E1ℓ̃
2
nk → 0.

By (6.15), noting that ℓ•1k − ℓ̃•1k =
∑N

n=1 ℓnkI{Znk>ωN},

(6.17) P1{ℓ•1k − ℓ̃•1k ≥ N ζ/
√
logN} → 0.

It follows from (6.16) and (6.17) that P1{ℓ•1k ≥ b̂} → 0 for b̂ = Nµ̃+N ζ/2+
N ζ/

√
logN [= o(N ζ) by (6.11)], hence (6.5) holds.

Checking (6.11)–(6.14):

(a) 1−ζ
2 < β ≤ 3(1−ζ)

4 and ρ(β, ζ) = β − 1−ζ
2 . By Jensen’s inequality,

Eℓ0 ≤ logEeℓ0 = 0, therefore to show (6.11), it suffices to show that

(6.18) pEℓ+1 = o(N ζ−1).

Indeed as log(1 + x) ≤ x, by (6.7),

(6.19) pEℓ+1 ≤ p2EeY µ
√
k+kµ2/2 = p2ekµ

2
= O(N−2β+(1−δ)(2β−1+ζ)),

and (6.18) holds.
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To show (6.12), note that

sup
1≤n≤N

ℓ̃+nk ≤ peωNµ
√
k−µk2/2 = peω

2
N/2−(ωN−µ

√
k)2/2(6.20)

∼ N−β+1−ζe−(wN−µ
√
k)2/2 logN.

Express β = 1−ζ
2 + α(1 − ζ) for some 0 < α < 1

4 . Since ρ(β, ζ) = α(1 − ζ)
and wN ≥

√
2(1− ζ) logN , by (6.7) there exists ϵ > 0 small such that

(wN−µ
√
k)2

2 logN ≥ (1− ζ)(1−
√
α)2 + ϵ(6.21)

= (1− ζ)[ (1−2
√
α)2

2 + 1
2 − α] + ϵ

≥ (1− ζ)(12 − α) + ϵ

= 1− ζ − β + ϵ.

Substituting (6.21) into (6.20) shows (6.12).
To show (6.13), note that by (6.19),

(6.22) Eℓ20 = O(p2e2Y µ
√
k−kµ2

) = O(p2ekµ
2
) = o(N ζ−1).

Since β > 1−ζ
2 ,

(6.23) (ℓ̃−nk)
2 = O(p2) = o(N ζ−1),

and (6.13) follows from (6.12), (6.18) and (6.22).
Finally to show (6.14), note that P{Y > ωN} = o(N ζ−1/ logN), and that

by (6.21),

pP{Y + µ
√
k > ωN} = O(N−βe−(ωN−µ

√
k)2/2)(6.24)

= o(N ζ−1/ logN).

(b) 3(1−ζ)
4 < β < 1 − ζ and ρ(x, y) = (x − y)2, where x =

√
1− ζ,

y =
√
1− ζ − β. By log(1 + v) ≤ v,

pE(ℓ+1 I{Y+µ
√
k≤ωN}) ≤ p2

∫ ωN−µ
√
k

−∞
1√
2π
e−z2/2+zµ

√
k+kµ2/2dz(6.25)

= p2ekµ
2
Φ(ωN − 2µ

√
k).

Since ωN ∼ x
√
2 logN , µ

√
k = (1 − δ)(x − y)

√
2 logN + O(1) and x > 2y,

it follows that ωN < 2µ
√
k for δ > 0 small, and therefore

p2ekµ
2
Φ(ωN − 2µ

√
k) = O(p2ekµ

2−(ωN−2µ
√
k)2/2)(6.26)

= O(p2eω
2
N/2−(ωN−µ

√
k)2)

= O(N−2β+x2−2y2−ϵ) = O(N ζ−1−ϵ)
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for some ϵ > 0, since −2β + x2 − 2y2 = ζ − 1, And since Eℓ0 ≤ 0, (6.11)
follows from (6.25) and (6.26).

By the first line of (6.20),

ℓ̃nk ≤ peωNµ
√
k−µk2/2 = O(N−β+x2−y2−ϵ)

for some ϵ > 0, therefore (6.12) holds.
Note that by (6.9) and log(1 + v) ≤ v,

E(ℓ20I{Y≤ωN}) = O
(
p2
∫ ωN

−∞
1√
2π
e−z2/2+2zµ

√
k−kµ2

dz
)

= O(p2ekµ
2
Φ(ωN − 2µ

√
k)),

and (6.13) follows from (6.12), (6.23), (6.25) and (6.26). It is easy to check
that (6.24), and hence (6.14), holds in this sub-case.

Case 2: β > 1− ζ and k = ⌊δNβ+ζ−1⌋. Let

ℓ̂nk =

{
ℓnkI{Znk≤

√
2 logN} if n ̸∈ N ,

ℓnk if n ∈ N .

Let ℓ̂•1k =
∑N

n=1 ℓ̂nk. In place of (6.11) and (6.13), we shall check that for
δ > 0 small and N large,

E1ℓ̂nk ≤ N ζ−1/2,(6.27)

E1ℓ̂
2
nk = o(N2ζ−1).(6.28)

Note that in place of (6.15), we have

(6.29) P1{Znk >
√
2 logN for some n ̸∈ N}(= P1{ℓ•1k > ℓ̂•1k}) → 0.

It follows from (6.27), (6.28) and Chebyshev’s inequality, see the arguments
in (6.16), that P1{ℓ̂•1k ≥ 2N ζ/3} → 0, hence (6.5) follows from (6.29).

Check that

(6.30) log(1 + ex) ≤ log 2 + x+,

and apply it on (6.10) to show that

pEℓ1 ≤ p[log 2 + E(log p+ Y µ
√
k + kµ2/2)+] ∼ δµ2N ζ−1/2.

Since Eℓ0 ≤ 0, (6.27) holds when δ < µ−2.
Since supn ̸∈N |ℓ̂nk| ∼ p, by (6.30),

E1ℓ̂
2
nk ≤ pE(log p+ Y µ

√
k + kµ2/2)2 +O(p2)

= O(Nβ+2ζ−2) +O(N−2β),

and (6.28) holds because β < 1.
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7. Proof of Theorem 2. The following lemma provides an upper
bound for the threshold of the detectability score stopping rule.

Lemma 4. Consider stopping-rule TS(p0), 0 < p0 ≤ 1, with arbitrary
window-sizes K. If b = log(4γ2 + 2γ), then E∞TS(p0) ≥ γ.

Proof. It suffices to show that

(7.1) P∞{TS(p0) < 2γ} ≤ 1
2 .

Let Znst = Snst/
√
k, k = t − s + 1. Since Vst :=

∑N
n=1 g(Z

+
nst) is a log

likelihood ratio against Z1st, . . . , ZNst i.i.d. N(0,1), it follows from a change
of measure argument that

P∞{Vst ≥ b} ≤ e−b = (4γ2 + 2γ)−1.

By Bonferroni’s inequality,

P∞{TS < 2γ} ≤
∑

(s,t):1≤s≤t<2γ

P∞{Vst ≥ b} ≤
(
⌊2γ + 1⌋

2

)
(4γ2 + 2γ)−1,

and (7.1) follows. ⊓⊔

Assume (2.3), (2.4) and let η = minm∈JN P1{
∑N

n=1 g(Z
+
n1k) ≥ b|#N =

m}, where

(7.2) JN = {m : |m−Np| ≤ N (ζ+1)/2}.

By the Chernoff-Hoeffding’s inequality,

(7.3) P1{#N ̸∈ JN} ≤ exp(−2N ζ) = o(γ−1).

We shall show in various cases below that η → 1 when

(7.4) k =


1 if β < 1−ζ

2 ,

⌊(1 + δ)2µ−2ρ(β, ζ) logN⌋ if 1−ζ
2 < β < 1− ζ,

MNβ+ζ−1 if β > 1− ζ,

for all δ > 0, and M large. For j ≥ 1 and m ∈ JN , P1{TS(p0) ≥ jk+1|#N =
m} ≤ (1− η)j . Hence by (7.3),

(7.5) DN (TS(p0)) ≤ k
∞∑
j=0

(1− η)j + γP1{#N ̸∈ JN} ∼ k,

and the proof of Theorem 2 is complete.
Let VN =

∑N
n=1 g(Y

+
n ) for Y1, . . . , YN i.i.d. N(0,1).
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Lemma 5. If p0 ∼ cN (ζ−1)/2, then P{VN ≥ −N ζ} → 1.

Proof. Let Φ̄(z) =
∫∞
z ϕ(y)dy where ϕ(y) = 1√

2π
e−y2/2, and g̃(z) =

g(z)I{z≤wN} where wN =
√
2(1− ζ) logN − (log logN)/2. By log(1+x) ∼ x

and p0e
w2

N/4 → 0,

Eg̃(Y1) ∼ cN (ζ−1)/2
∫ wN

−∞
(λez

2
+/4 − 1)ϕ(z)dz(7.6)

= cN (ζ−1)/2
[
λ
2 + λ

√
2

∫ wN

0

1√
4π
e−z2/4dz − Φ(wN )

]
= cN (ζ−1)/2{[λ2 − Φ(wN )] + λ

√
2[12 − Φ̄(wN√

2
)]}.

Since λ = 2(
√
2− 1) solves λ

2 + λ√
2
= 1 and Φ̄(wN ) ≤ Φ̄(wN√

2
) = o(N (ζ−1)/2),

by (7.6),

(7.7) |Eg̃(Y1)| = o(N ζ−1).

Since

Eg̃2(Y1) ∼ c2N ζ−1
∫ wN

−∞
(λez

2
+/4 − 1)2ϕ(z)dz = O(N ζ−1

√
logN),

and g ≥ g̃, we conclude Lemma 5 from (7.7) and Chebyshev’s inequality. ⊓⊔

Let h(z) = g((z + µ
√
k)+)− g(z+)(≥ 0) and HN =

∑
n∈N h(Yn). Then

η = min
m∈JN

P{VN +HN ≥ b|#N = m}.

In view of Lemmas 4 and 5, to show η → 1 and hence (7.5), it suffices to
show that

(7.8) min
m∈JN

P{HN ≥ 4N ζ |#N = m} → 1.

We shall check (7.8) in three cases below. Note that #N ∈ JN implies
#N ∼ N1−β. For notational simplicity, we shall let C denote a generic
positive constant.

Case 0: β < 1−ζ
2 and k = 1. Since log(1 + x) ∼ x as x → 0,

h(z) ∼ cλN (ζ−1)/2(e(z+µ)2/4 − ez
2/4) ≥ cλN (ζ−1)/2(eµ

2/4 − 1),

uniformly over 0 ≤ z ≤ 1. Hence by LLN,

HN ≥ [C + op(1)]N
1−β+(ζ−1)/2,
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and (7.8) holds because 1− β + ζ−1
2 > ζ.

Case 1: 1−ζ
2 < β < 1 − ζ and k = ⌊(1 + δ)2µ−2ρ(β, ζ) logN⌋. We shall

show (7.8) for the following sub-cases.

(a) 1−ζ
2 < β ≤ 3(1−ζ)

4 and ρ(β, ζ) = β− 1−ζ
2 . For δ > 0 small and z ≥ µ

√
k,

h(z) ∼ log[1 + cN (ζ−1)/2(λe(z+µ
√
k)2/4 − 1)](7.9)

− log[1 + cN (ζ−1)/2(λez
2/4 − 1)]

≥ [cλ+ o(1)]N (ζ−1)/2eµ
2k.

Since P{Yn ≥ µ
√
k} ≥ Ce−µ2k/2/

√
logN , by (7.9) and LLN,

HN ≥ [C + op(1)]N
1−β+(ζ−1)/2eµ

2k/2/
√
logN

≥ [C + op(1)]N
1−β+(ζ−1)/2+ρ(β,ζ)+ϵ/

√
logN

for some ϵ > 0, and (7.8) holds because 1− β + ζ−1
2 + ρ(β, ζ) = ζ.

(b) 3(1−ζ)
4 < β < 1 − ζ and ρ(β, ζ) = (x − y)2, where x =

√
1− ζ,

y =
√
1− ζ − β. Since µ2k = 2(1 + δ)(x − y)2 logN + O(1), by the first

relation in (7.9), h(z) ≥ C for z ≥
√
2(y2 − ϵ) logN with ϵ > 0 small. Since

P{Yn ≥
√
2(y2 − ϵ) logN} ≥ CN−y2+ϵ/

√
logN , by LLN,

HN ≥ [C + op(1)]N
1−β−y2+ϵ/

√
logN,

and (7.8) holds because 1− β − y2 = ζ.

Case 2: β > 1 − ζ and k = MNβ+ζ−1. By the first relation in (7.9), for
z ≥ 0,

h(z) ≥ kµ2

4 +O(logN) = [Mµ2

4 + o(1)]Nβ+ζ−1.

By LLN, HN ≥ [Mµ2

8 + op(1)]N
ζ , and (7.8) holds for M > 32µ−2.

8. Proof of Theorem 3. In Lemma 6 below we provide an upper
bound of the detection threshold of the extended Mei’s stopping rule, and
follow this with conditions under which this bound is exceeded under Pν .
We complete the proof by checking these conditions for various cases. Let

g0(x) = gM (x)− u where gM (x) = log[1 + p0(λMex/2 − 1)],
u = log[1 + p0(λMξ − 1)],

and ξ = limt→∞EeRnt/2.
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Lemma 6. Consider stopping rule TMei(p0), 0 < p0 ≤ 1. If threshold
b = Nu+ log(4γ), then E∞TMei(p0) ≥ γ.

Proof. If b = Nu+ log(4γ), then

TMei(p0) = inf
{
t :

N∑
n=1

g0(Rnt) ≥ log(4γ)
}
.

Let Sj =
∑j

i=1 Yi with Yi i.i.d. N(0,1), and let

R = sup
j≥0

(µ0Sj − jµ2
0/2).

Let R1, . . . , RN be an i.i.d. sample with the distribution of R. Let 1 ≤ t < 2γ.
Since Rnt is bounded stochastically by Rn, it follows from Eeg0(Rn) = 1, a
change of measure argument and g0 monotone that

P∞
{ N∑

n=1

g0(Rnt) ≥ log(4γ)
}
≤ P

{ N∑
n=1

g0(Rn) ≥ log(4γ)
}
≤ (4γ)−1.

Therefore {TMei(p0) < 2γ} is a union of no more than 2γ events, each with
probability bounded by (4γ)−1 under P∞. We conclude that P∞{TMei(p0) <
2γ} ≤ 1

2 . Hence E∞TMei(p0) ≥ γ. ⊓⊔

Let ν ≥ Kn and t = ν + k − 1, where k = ⌊(1 + δ)2µ−2ρ(β, ζ) logN⌋
for δ > 0 small. Let Un = µ0

∑t
i=ν Xni − kµ2

0/2 (≤ Rnt). Under Pν , Un ∼
N(kµ0(µ− µ0

2 ), kµ2
0) when n ∈ N . Theorem 3 follows from

inf
m∈JN

Pν

{ ∑
n̸∈N

g0(Rnt) ≥ −N ζ+ϵ
∣∣∣#N = m

}
→ 1,(8.1)

inf
m∈JN

Pν

{ ∑
n∈N

g0(U
+
n ) ≥ 2N ζ+ϵ

∣∣∣#N = m
}

→ 1,(8.2)

for some ϵ > 0, with m ∼ N1−β uniformly over m ∈ JN , see (7.2).
The following lemma provides the framework for showing (8.1) and (8.2).

Let g̃0(y) = g0(y)I{y≤vN}, where

(8.3) vN = (1− ζ) logN − log logN.

Lemma 7. If t ≥ 4µ−2
0 (1− ζ) logN and n ̸∈ N , then for all ϵ > 0,

(8.4) E∞(eRnt/2I{Rnt≤vN}) = ξ + o(N (ζ−1)/2+ϵ).
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Moreover if p0 ∼ cN (ζ−1)/2 with c > 0, then

[ inf
y≥0

g̃0(y)]
2 = O(N ζ−1),(8.5)

sup
y≥0

g̃0(y) = O(1).(8.6)

Proof. The relation (8.5) follows from

| inf
y≥0

g̃0(y)| = |g0(0)| = O(p0) = O(N (ζ−1)/2),

whereas (8.6) follows from supy≥0 g̃0(y) = g0(vN ) = O(1).
By (5.1), we can express

Rnt = sup
1≤s≤t

[µ0Snst − (t− s+ 1)µ2
0/2]

+.

Extend {Xnu : u ≥ 1} to {Xnu : −∞ < u < ∞} by letting Xnu i.i.d. N(0,1)
under P∞ for u ≤ 0. Fix t and let

R∗
n = sup

−∞<s≤t
[µ0Snst − (t− s+ 1)µ2

0/2]
+,

extending the definition of Snst =
∑t

i=sXni to s ≤ 0.
Since ξ = limt→∞E∞eRnt/2, to show (8.4), it suffices to show that

E∞(eRnt/2I{Rnt>vN}) = o(N (ζ−1)/2+ϵ),(8.7)

E∞(eR
∗
n/2I{R∗

n>Rnt}) = o(N (ζ−1)/2+ϵ).(8.8)

We conclude (8.7) from (5.5) and (8.3). Let Q = supj≥t(µ0Sj − jµ2
0/2)

and R′ = supj≥0(ωSj − jω2µ2
0/2) for some ω > 1

2 . By (5.5), for x ≥ 0,

P∞{R∗
n > Rnt, R

∗
n ≥ x} ≤ P{Q ≥ x} ≤ P{R′ ≥ ωx+ t(ω − ω2)µ2

0/2}
= O(e−ωx−t(ω−ω2)µ2

0/2).

Hence by selecting ω close enough to 1
2 , it follows that

E∞(eR
∗
n/2I{R∗

n>Rnt}) =

∫ ∞

−∞
1
2e

x/2P∞{R∗
n > Rnt, R

∗
n ≥ x}dx = O(e−tµ2

0/8+ϵ),

and (8.8) holds for t ≥ 4µ−2
0 (1− ζ) logN . ⊓⊔

We conclude (8.1) from (8.4), p0 ∼ cN (ζ−1)/2 and LLN. We note that
indeed t(= ν + k − 1) ≥ 4µ−2

0 (1− ζ) logN when
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(a) 1−ζ
2 < β ≤ 3(1−ζ)

4 , ρ(β, ζ) = β − 1−ζ
2 , µ0 = 2µ, ν ≥ 2µ−2(1 − ζ −

β) logN ,

(b) 3(1−ζ)
4 < β < 1− ζ, µ0 = µ

√
1−ζ
ρ(β,ζ) , ν ≥ 2µ−2ρ(β, ζ) logN .

It remains for us to check (8.2) on:

(a) 1−ζ
2 < β < 3(1−ζ)

4 . Since µ0 = 2µ, we have Un ∼ N(0,kµ2
0) when

n ∈ N . Hence

Eν [g̃0(U
+
n )|n ∈ N ](8.9)

∼ p0[Eν(e
U+
n /2I{Un≤vN}|n ∈ N )− ξ]

∼ cN (ζ−1)/2ekµ
2
0/8
∫ vN

−∞
1√

2kπµ2
0

e−(y−kµ2
0/2)

2/(2kµ2
0)dy

= cN (ζ−1)/2ekµ
2
0/8Φ(

vN−kµ2
0/2

µ0

√
k

).

Check that ekµ
2
0/8 = N [1+δ+o(1)]ρ(β,ζ) ≥ Nβ+(ζ−1)/2+2ϵ for ϵ > 0 small and N

large. Moreover ρ(β, ζ) < 1−ζ
4 , therefore vN >

kµ2
0

2 [∼ 4(1 + δ)ρ(β, ζ) logN ]
for δ > 0 small. Hence by (8.9),

(8.10) Eν [g̃0(U
+
n )|n ∈ N ] ∼ [c+ o(1)]Nβ+ζ−1+2ϵ.

By (8.5), (8.6) and (8.10), we can conclude

Eν [g̃
2
0(U

+
n )|n ∈ N ] = O(|Eν [g̃0(U

+
n )|n ∈ N ]|),

and (8.2) then follows from (8.10), Chebyshev’s inequality and g0 ≥ g̃0.

(b) 3(1−ζ)
4 ≤ β < 1− ζ. For n ∈ N , express Un = kµ0(µ− µ0

2 ) +
√
kµ0Yn,

with Yn ∼ N(0,1). Let N1 = {n ∈ N : Yn ≥
√
2(1− ζ − β − 2ϵ) logN} for

ϵ > 0 satisfying

(8.11) 1− ζ − β − 2ϵ ≥ (1− ζ − β)/(1 + δ).

By LLN,

#N1 = (#N )[C + op(1)]N
ζ+β−1+2ϵ/

√
logN(8.12)

= [C + op(1)]N
ζ+2ϵ/

√
logN.

Let r = µ0/µ(=
√

1−ζ
ρ(β,ζ) ≤ 2). Since r − 1 =

√
1−ζ−β
ρ(β,ζ) , by (7.4) and (8.11),

for n ∈ N1 with N large,

Un ≥ kµ2(r − r2

2 ) + µr(r − 1)
√

2kρ(β,ζ) logN
1+δ
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= 2ρ(β, ζ) logN [(1 + δ)(r − r2

2 ) + r2 − r] +O(1)
≥ r2ρ(β, ζ) logN = (1− ζ) logN,

g0(U
+
n ) ≥ log[1 + p0(N

(ζ−1)/2 − 1)]− log[1 + p0(ξ − 1)] → log(1 + c).

Hence by (8.12), ∑
n∈N1

g0(U
+
n ) ≥ [C + op(1)]N

ζ+2ϵ/
√
logN.

This, combined with∑
n∈N\N1

g0(U
+
n ) ≥ −[C + op(1)]N

1−β log p0

∼ −[C + op(1)]N
1−β+(ζ−1)/2,

and noting that 1− β + ζ−1
2 ≤ 1− 5

4(1− ζ) < ζ, shows (8.2).
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APPENDIX A: MOTIVATIONS BEHIND (6.7)

In view of the need to satisfy (6.5), we choose k to be the “largest” possible
such that

(A.1) E1ℓ•1k < 2N ζ/3.

Under P1, Znk ∼ (1− p)N(0,1)+pN(µ
√
k, 1). Let Y ∼ N(0,1). Since

(A.2) log(1 + x) ≤ x, EeY µ
√
k = ekµ

2/2,

it follows that

E1ℓ•1k {= N(1− p)E log[1 + p(eY µ
√
k−kµ2/2 − 1)](A.3)

+NpE log[1 + p(eY µ
√
k+kµ2/2 − 1)]}

≤ NpE log[1 + p(eY µ
√
k+kµ2/2 − 1)].

Case 1(a): 1−ζ
2 < β ≤ 3(1−ζ)

4 . It follows from applying (A.2) on (A.3) that

(A.4) E1ℓ•1k ≤ Np2(ekµ
2 − 1) ∼ N1−2β+(kµ2/ logN).

Hence choosing k = ⌊(1−δ)µ−2(2β+ζ−1) logN⌋ as in (6.7) ensures E1ℓ•1k =
o(N ζ), and so (A.1) holds.
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Case 1(b): 3(1−ζ)
4 < β < 1−ζ. The inequality in (A.4) is further sharpened

to allow for larger k satisfying (A.1). Let ω be the root of

(A.5) eωµ
√
k+kµ2/2 = Nβ(∼ p−1).

By (A5) applying the inequalities

(A.6) log(1 + x) ≤
{

x if − 1 < x < 1,
log 2 + log x if x ≥ 1,

on (A.3) results in

E1ℓ•1k ≤ Np2
∫ ω

−∞
1√
2π
e−z2/2+zµ

√
k+kµ2/2dz +O(Npke−ω2/2)(A.7)

= Np2ekµ
2
Φ(ω − µ

√
k) +O(Npke−ω2/2)

= O(Npke−ω2/2).

By (A.5),

(A.8) ωµ
√
k + kµ2/2 = β logN(⇒ µ

√
k = −ω +

√
ω2 + 2β logN),

and by (A.7), we satisfy (A.1) if

(A.9) (1− β) logN − ω2/2 < ζ logN(⇒ ω >
√
2(1− β − ζ) logN).

Combining (A.8) and (A.9) leads to k < 2µ−2(
√
1− ζ−

√
1− ζ − β)2 logN .

Hence the choice of k = ⌊(1−δ)2µ−2(
√
1− ζ−

√
(1− ζ − β)2 logN⌋ in (6.7).

Case 2: β > 1 − ζ. By (A.3) and (A.6), choosing k = ⌊δNβ+ζ−1⌋ as in
(6.7) ensures that

E1ℓ•1k ≤ [1 + o(1)]NpE(Y µ
√
k + kµ2/2) ∼ δµ2N ζ/2,

and (A.1) indeed holds for δ > 0 small.

APPENDIX B: MINIMUM DETECTION DELAY UNDER THE
MINIMAX SETTING

Let IN = (I1, . . . , IN ), where In = I{n∈N}. Let Eν,IN denote expectation
with respect to Xnt ∼ N(µnt, 1), with µnt = µInI{t≥ν}. For a given stopping
rule T , define

DN,m(T ) = sup
1≤ν<∞

[
max

IN :
∑

In=m
Eν,IN (T − ν + 1|T ≥ ν)

]
.

The following is an analogue of Theorem 1 on a minimax setting.

imsart ver. 2008/08/29 file: seq-sparse8.tex date: January 12, 2016



OPTIMAL SEQUENTIAL DETECION IN MULTI-STREAM DATA 25

Theorem 4. Let T be a stopping rule such that ARL(T ) ≥ γ, with
log γ ∼ N ζ for some ζ > 0. Let m ∼ N1−β for some 0 < β < 1.

(a) If 1−ζ
2 < β < 1− ζ, then

lim inf
N→∞

DN,m(T )

logN
≥ 2µ−2ρ(β, ζ).

(b) If β > 1− ζ, then

lim inf
N→∞

logDN,m(T )

logN
≥ β + ζ − 1.

Proof. Let k be chosen as in (6.7). By Lemma 1 we can find s ≥ 1 such
that

(B.1) P∞{T ≥ s+ k|T ≥ s} ≥ 1− k/γ.

Let t = s+ k − 1, and consider the test, conditional on T ≥ s, of

H0 : Xnu ∼ N(0,1) for 1 ≤ n ≤ N, 1 ≤ u ≤ t,
vs Hs,m : Xnu ∼ N(µI{u≥s,n∈N}, 1) for 1 ≤ n ≤ N, 1 ≤ u ≤ t,

with N a random subset of {1, . . . , N} of size m.

By (B.1) the test rejecting H0 when T < s+ k has Type I error probability
not exceeding k/γ.

Let Aj = {N : #N = j}. At time t, the (conditional) likelihood ratio
between Hs,m and H0 is Lm(= Lmst), where

Lj =

(
N

j

)−1 ∑
N∈Aj

( ∏
n∈N

eZnµ
√
k−kµ2/2

)
, Zn = Znst.

Let Ps,m (Es,m) denote probability (expectation) with respect to Hs,m.
We shall check on various cases below that

(B.2) Ps,m{Lm ≥ J} → 0, J = exp(2N ζ/3).

Let B be such that Ps,m{J ≥ Lm ≥ B} = exp(−N ζ/4). It follows from
(B.2) that

(B.3) Ps,m{Lm ≥ B}(= Ps,m{Lm ≥ B|T ≥ s}) → 0,
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and that for N large,

P∞{Lm ≥ B}(= P∞{Lm ≥ B|T ≥ s}) ≥ P∞{J ≥ Lm ≥ B}(B.4)

= Es,m(L−1
m I{J≥Lm≥B}) ≥ J−1 exp(−N ζ/4) ≥ k/γ.

By (B.1), (B.4) and the Neyman-Pearson Lemma, the test rejectingH0 when
Lm ≥ B is at least as powerful as the one based on T , that is

(B.5) Ps,m{T ≥ s+ k|T ≥ s} ≥ Ps,m{Lm < B}.

It follows from (B.3) and (B.5) that

DN,m(T ) ≥ Es,m(T − s+1|T ≥ s) ≥ kPs,m{T ≥ s+ k|T ≥ s} = k[1 + o(1)],

and the proof of Theorem 4 is complete. ⊓⊔

We shall now proceed to check (B.2). Let p1 = 2N−β and

(B.6) L(p1) =
N∏

n=1

(1− p1 + p1e
Znµ

√
k−kµ2/2)

[
=

N∑
j=0

(1− p1)
N−jpj1

(
N

j

)
Lj

]
.

Since Zn ∼ N(µ
√
k, 1) if n ∈ N and Zn ∼ N(0,1) if n ̸∈ N , it follows that

EeZnµ
√
k−kµ2/2 =

{
ekµ

2
if n ∈ N ,

1 if n ̸∈ N .

Therefore by (B.6),

(B.7) Es,mL(p1) = (1− p1 + p1e
kµ2

)m,

the exponent m in (B.7) due to #N = m for each N under Hs,m. By the
monotonicity Es,mL1 ≤ · · · ≤ Es,mLN , and by P{W ≥ m} → 1 for W ∼
Binomial(N, p1), it follows from (B.6) that

(B.8) Es,mL(p1) ≥ P{W ≥ m}Es,mLm = [1 + o(1)]Es,mLm.

By (B.7), (B.8) and Markov’s inequality, to show (B.2) it suffices to show
that

(B.9) (1− p1 + p1e
kµ2

)m = o(exp(2N ζ/3)),

and this can be easily done for the following cases.
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Case 1(a): 1−ζ
2 < β ≤ 3(1−ζ)

4 , k = ⌊(1−δ)µ−2(2β+ζ−1) logN⌋. We show
(B.9) by applying the inequality

(1− p1 + p1e
kµ2

)m ≤ exp(mp1e
kµ2

).

Case 2: β > 1−ζ, k = ⌊δNβ+ζ−1⌋, δ > 0 small. We show (B.9) by applying
the inequalities (for large N),

(1− p1 + p1e
kµ2

)m ≤ (2p1e
kµ2

)m ≤ ekµ
2m.

The final case below is more complicated. Additional truncation argu-
ments are needed to show (B.2).

Case 1(b): 3(1−ζ)
4 < β < 1 − ζ, k = ⌊(1 − δ)2µ−2(x − y)2 logN⌋, where

x =
√
1− ζ and y =

√
1− ζ − β. The outline of the arguments needed to

show (B.2) is as follows.

1. Let Z̃n = min(Zn, ω), where

ω(= ωN ) =
√
2(1− ζ) logN + 2 log logN(

.
= x

√
2 logN).

Let p1 = 2N−β and

(B.10) L̃(p1) =
N∏

n=1

(1− p1 + p1e
Z̃nµ

√
k−kµ2/2).

Show that Es,mL̃(p1) = o(J1/2)[= o(exp(N ζ/3))].
2. Argue that we have monotonicity Es,mL̃1 ≤ · · · ≤ Es,mL̃N , where

L̃j =

(
N

j

)−1 ∑
N∈Aj

( ∏
n∈N

eZ̃nµ
√
k−kµ2/2

)
,

and conclude that

(B.11) Es,mL̃(p1) ≥ P{W ≥ m}Es,mL̃m = [1 + o(1)]Es,mL̃m,

where W ∼ Binomial(N, p1).
3. Let C > 0 and L̂m = LmIG, where G(= GN ) is the event that

max
1≤n≤N

Zn ≤ C
√
logN, FN := #{n : Zn > ω} ≤ N ζ/(logN)5/4.

Show that uniformly under G,

max
N∈Am

( ∏
n∈N

e(Zn−Z̃n)µ
√
k
)
= o(J1/2)[= o(exp(N ζ/3))],

and conclude that L̂m/L̃m = o(J1/2).
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4. Show that for C large, Ps,m(GN ) → 1 and so Ps,m{Lm > L̂m} → 0.

By steps 1, 2 and Markov’s inequality, Ps,m{L̃m ≥ J1/2} → 0. By step 3 we
can further conclude that Ps,m{L̂m ≥ J} → 0, and (B.2) then follows from
step 4. We shall now provide details to the above outline.

1. If n ̸∈ N , then EeZ̃nµ
√
k−kµ2/2 ≤ 1, and if n ∈ N , then

EeZ̃nµ
√
k−kµ2/2 = ekµ

2
Φ(ω − 2µ

√
k) + [1− Φ(ω − µ

√
k)]eωµ

√
k−kµ2/2

= o(N2(x−y)2−(2y−x)2) + o(N−y2+2x(x−y)−(x−y)2)

= o(Nx2−2y2).

Since #N = m for each N under Hs,m, by (B.10),

Es,mL̃(p1) ≤ [1 + p1o(N
x2−2y2)]m ≤ exp[mp1o(N

x2−2y2)] = o(J1/2).

2. The monotonicity follows from Z̃n stochastically larger when n ∈ N
compared to when n ̸∈ N , whereas the inequality in (B.11) follows
from the monotonicity and the expansion

L̃(p1) =
N∑
j=0

(1− p1)
N−jpj1

(
N

j

)
L̃j .

3. Under G, there exists C̃ > 0 not depending on N such that for all
N ∈ Am,∏

n∈N
e(Zn−Z̃n)µ

√
k ≤ exp(FNC

√
logNµ

√
k)

≤ exp
(

Nζ

(logN)5/4
· C̃ logN

)
= o(J1/2).

4. Let Φ̄(·) = 1−Φ(·). We apply Markov’s inequality to show Ps,m(GN ) → 1
by checking that

(B.12) mΦ̄(ω − µ
√
k) + (N −m)Φ̄(ω) = o

(
Nζ

(logN)5/4

)
,

and that for C large,

(B.13) mΦ̄(C
√
logN − µ

√
k) + (N −m)Φ̄(C

√
logN) → 0.

ByMill’s inequality, (B.13) holds for C large andN Φ̄(ω) = o
(

Nζ

(logN)5/4

)
.

Moreover

lim sup
N→∞

logN [mΦ̄(ω − µ
√
k)] < 1− β − y2 = ζ,

and so (B.12) holds as well.
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