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Abstract

Lai and Robbins (1985) and Lai (1987) provided efficient paramet-
ric solutions to the multi-armed bandit problem, showing that arm
allocation via upper confidence bounds (UCB) achieves minimum re-
gret. These bounds are constructed from the Kullback-Leibler infor-
mation of the reward distributions, estimated from within a specified
parametric family. In recent years there has been renewed interest in
the multi-armed bandit problem due to new applications in machine
learning algorithms and data analytics. Non-parametric arm alloca-
tion procedures like ϵ-greedy and Boltzmann exploration were studied,
and modified versions of the UCB procedure were also analyzed under
a non-parametric setting. However unlike UCB these non-parametric
procedures are not efficient under parametric settings. In this paper
we propose a subsample comparison procedure that is non-parametric,
but still efficient under parametric settings.

1 Introduction

Lai and Robbins (1985) provided an asymptotic lower bound for the regret
in the multi-armed bandit problem, and proposed a play-the-leader strat-
egy that is efficient, that is it achieves this bound. Lai (1987) showed that
allocation to the arm having the highest upper confidence bound (UCB),
constructed from the Kullback-Leibler (KL) information between the esti-
mated reward distributions of the arms, is efficient when the distributions
belong to a specified exponential family. Agrawal (1995) modified UCB-Lai
and showed that efficiency can still be achieved without having to know in
advance the total sample size.

Burnetas and Kalehakis (1996) extended the UCB to multi-parameter
families, almost showing efficiency in the natural setting of normal rewards
with unequal variances. Yakowitz and Lowe (1991) proposed non-parametric
procedures that do not make use of KL-information, suggesting logarithmic
and polynomial rates of regret under finite exponential and moment condi-
tions respectively.
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Auer, Cesa-Bianchi and Fischer (2002) simplified UCB-Agrawal to UCB1,
and showed that logarithmic regret is achieved when the reward distribu-
tions are supported on [0,1]. They also studied the ϵ-greedy algorithm of
Sutton and Barto (1998), providing finite-time upper bounds of its regret.
Both UCB1 and ϵ-greedy are non-parametric in their applications and, un-
like UCB-Lai or -Agrawal, are not expected to be efficient under a general
exponential family setting. Other non-parametric methods that have been
proposed include reinforcement comparison, Boltzmann exploration (Sut-
ton and Barto, 1998) and pursuit (Thathacher and Sastry, 1985). Kuleshov
and Precup (2014) provided numerical comparisons between UCB and these
methods. For a description of applications to recommender systems and clin-
ical trials, see Shivaswamy and Joachims (2012). The reader is also strongly
encouraged to go over Burtini, Loeppky and Lawrence (2015) for a compre-
hensive survey of the methods, results and applications of the multi-armed
bandit problem, developed over the past thirty years.

A strong competitor to UCB under the parametric setting is the use of
the Bayesian method, see for example Fabius and van Zwet (1970), Berry
(1972) and Kaufmann, Cappé and Garivier (2012). There is also a well-
developed literature on optimization under an infinite-time discounted win-
dow setting, in which allocation is to the arm maximizing a dynamic al-
location (or Gittins) index, see the seminal papers by Gittins (1979) and
Gittins and Jones (1979), and also Berry and Fristedt (1985), Chang and
Lai (1987), Brezzi and Lai (2002) and Kim and Lim (2016) for more recent
advances. Another related problem is the study of the multi-armed bandit
with irreversible constraints, initiated by Hu and Wei (1989).

In this paper we propose an arm allocation procedure that though non-
parametric, is nevertheless efficient when the reward distributions are from
an unspecified exponential family. It achieves this by comparing subsample
means of the leading arm with the sample means of its competitors. It is
empirical in its approach, using more informative subsample means rather
than full-sample means alone, for better decision-making. An earlier ver-
sion of the subsampling strategy, known as best empirical sampled average
(BESA), appeared in Baransi, Maillard and Mannor (2014). However there
are key differences in their implementation of subsampling from ours, as will
be elaborated in Section 2.2.

The layout of the paper is as follows. In Section 2 we describe the
subsample comparison strategy for allocating arms. In Section 3 we show
that the strategy is efficient for exponential families, including the setting of
normal rewards with unequal variances. To the best of our knowledge, this
is the first instance that efficiency has been demonstrated under this two-
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parameter setting. In Section 4 we show logarthmic regret under the more
general setting of Markovian rewards. In Section 5 we provide numerical
comparisons against existing methods. In Section 6 we prove the results of
Sections 3 and 4.

2 Subsample comparisons

Let Yk1, Yk2, . . ., 1 ≤ k ≤ K, be the observations (or rewards) from a statis-
tical population Πk. We assume here and in Section 3 that the rewards are
independent and identically distributed (i.i.d.) within each arm. We extend
to Markovian rewards in Section 4. Let µk = EYkt and µ∗ = max1≤k≤K µk.
Let ⌊·⌋ and ⌈·⌉ denote the greatest and least integer function respectively.

Consider a sequential procedure for selecting the population to be sam-
pled at each time-stage. We refer to it as an arm allocation procedure in ac-
cordance to this being the multi-armed bandit problem. Let Nk be the num-
ber of observations from Πk afterN stages of sampling, henceN =

∑K
k=1Nk.

The objective is to minimize the regret

RN :=

K∑
k=1

(µ∗ − µk)ENk.

The Kullback-Leibler information number between two densities f and
g, with respect to a common (σ-finite) measure, is

D(f |g) = Ef [log
f(Y )
g(Y ) ], (2.1)

where Ef denotes expectation with respect to Y ∼ f . An arm allocation
procedure is said to converge uniformly fast if

RN = o(N ϵ) for all ϵ > 0, (2.2)

uniformly over all reward distributions lying within a specified parametric
family.

Let fk be the density of Πk and let f∗ = fk for k such that µk = µ∗
(assuming f∗ is unique). The celebrated result of Lai and Robbins (1985) is
that under (2.2) and additional regularity conditions,

lim inf
N→∞

RN
logN

≥
∑

k:µk<µ∗

µ∗ − µk
D(fk|f∗)

. (2.3)

Lai and Robbins (1985) and Lai (1987) went on to propose arm allocation
procedures that have regrets achieving the lower bound, and are hence effi-
cient.
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2.1 Review of existing methods

In the setting of normal rewards with unit variances, UCB-Lai can be de-
scribed as the selection of the population Πk maximizing

Ȳknk
+

√
2 log(N/n)

n , (2.4)

where Ȳkt =
1
t

∑t
u=1 Yku, n is the current number of observations from theK

populations, and nk is the current number of observations from Πk. Agrawal
(1995) proposed a modified version of UCB-Lai that does not involve the
total sample size N , with the selection instead of the population Πk maxi-
mizing

Ȳknk
+

√
2(logn+log logn+bn)

nk
, (2.5)

with bn → ∞ and bn = o(log n). Efficiency holds for (2.4) and (2.5), and
there are corresponding versions of (2.4) and (2.5) that are efficient for other
one-parameter exponential families.

Auer, Cesa-Bianchi and Fischer (2002) simplified UCB-Agrawal to UCB1,
proposing instead that the population Πk maximizing

Ȳknk
+

√
2 logn
nk

(2.6)

be selected. They showed that under UCB1, RN = O(logN) when the
reward distributions are supported on [0,1]. In the setting of normal re-
wards with unequal (and unknown) variances, Auer et al. suggested apply-
ing a variant of UCB1 which they called UCB1-Normal, and showed that
RN = O(logN). Under UCB1-Normal, an observation is taken from any
population Πk with nk < ⌈8 log n⌉. If such a population does not exist, then
an observation is taken from the population Πk maximizing

Ȳknk
+ 4σ̂knk

√
logn
nk

,

where σ̂2kt =
1
t−1

∑t
u=1(Yku − Ȳkt)

2.
Auer et al. provided an excellent study of various non-parametric arm

allocation procedures, for example the ϵ-greedy procedure proposed by Sut-
ton and Barto (1998), in which an observation is taken from the arm with
the largest sample mean with probability 1 − ϵ, and randomly with prob-
ability ϵ. Auer et al. suggested replacing the fixed ϵ at every stage by a
stage-dependent

ϵn = min(1, cK
d2n

),
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with c user-specified and 0 < d ≤ mink:µk<µ∗(µ∗ −µk). They showed that if
c > 5, then logarithmic regret is achieved for reward distributions supported
on [0, 1]. In practice d is unlikely to be known, in which case the user is
effectively selecting a single tuning parameter c

d2
. A more recent numerical

study by Kuleshov and Precup (2014) considered additional non-parametric
procedures, for example Boltzmann exporation in which an observation is
taken from a population Πk with probability proportional to eȲknk

/τ , for
some τ > 0.

2.2 Subsample-mean comparisons

A common characteristic of the procedures described in Section 2.1 is that
a decision is made based solely on a comparison of the sample means Ȳknk

,
with the exception of UCB1-Normal in which σ̂knk

is also utilized. As we
shall illustrate after describing the subsample-mean comparison procedure
below, we can utilize subsample-mean information from the leading arm to
estimate the same critical value for selecting from inferior arms as UCB-
Agrawal and UCB1, and this leads to efficiency despite not specifying the
underlying exponential family.

In subsample comparison, we apply the play-the-leader strategy (similar
to that) of Lai and Robbins (1985). Let Ȳk,t:u = 1

u−t+1

∑u
v=t Ykv and Ȳkt =

Ȳ1,1:t. Let r denote the round number of the challenges.

Subsample-mean comparison

1. r = 1. Sample each Πk exactly once.

2. r = 2, 3, . . ..

(a) Let the leader ζ[= ζ(n)] be the population with the most observa-
tions, with ties resolved by the larger sample mean Ȳknk

, followed
by randomization.

(b) Set up a challenge between Πζ and each Πk for k ̸= ζ in the
following manner.

i. If nk = nζ , then Πk loses the challenge automatically.

ii. If nk <
√
log n, then Πk wins the challenge automatically.

iii. If
√
log n < nk < nζ , then Πk wins the challenge when

Ȳknk
≥ Ȳζ,t:(t+nk−1) for some 1 ≤ t ≤ nζ − nk + 1. (2.7)

(c) For k ̸= ζ, sample from Πk if Πk wins its challenge against Πζ .
Sample from Πζ if Πζ wins all its challenges.
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Note that if Πζ wins all its challenges, then ζ and (nk : k ≠ ζ) are
unchanged, and in the next round it suffices to perform the comparison in
(2.7) at the largest t only instead of at every t. The computational burden is
thus O(1). The computational burden is O(n) in the next round if at least
one k ̸= ζ wins its challenge in the current round. Hence when subsample-
mean comparison achieves logarithmic regret, the total computational cost
is only O(N logN).

To understand why subsample-mean comparison achieves efficiency, we
consider the simple setting of unit variance normal with K = 2. Let z(p) be
such that

P (Z > z(p)) = p for Z ∼ N(0, 1).

Consider unbalanced sample sizes of say n2 = O(log n). Since z(p) ∼√
2| log p| for p small,

min
1≤t≤n1−n2+1

Ȳ1,t:(t+n2−1) = µ1 − [1 + op(1)]z(
1

n1−n2+1)
√

1
n2

= µ1 − [1 + op(1)]
√

2 logn
n2

.

Hence arm 2 wins the challenge if

Ȳ2n2 ≥ µ1 − [1 + op(1)]
√

2 logn
n2

. (2.8)

By (2.5) and (2.6), UCB-Agrawal and UCB1 also select arm 2 when (2.8)

holds, since Ȳ1n1 +
√

2 logn
n1

= µ1+op(1). Hence what subsample comparison

does is to estimate the critical value of µ1−[1+op(1)]
√

2 logn
n2

, empirically by

using the minimum of the running averages Ȳ1,t:(t+n2−1). The same critical
value is similarly estimated by UCB1-Agrawal and subsample-mean for other
exponential families. In the case of n1, n2 both large compared to log n,√

2 logn
n2

+
√

2 logn
n2

→ 0, and subsample-mean comparison, UCB-Agrawal

and UCB1 essentially select the population with the larger sample mean.
Baransi, Maillard and Mannor (2014) proposed a subsampling strategy

BESA which in the case K = 2, involves step 2(b)iii. alone with a single
comparison between Ȳknk

, and an empirical average of a random sample
without replacement of size nk from {Yζt}1≤t≤nζ

. They were able to show
logarithmic regret of BESA for rewards supported on [0,1]. In contrast our
subsample-mean strategy involves considerably more comparisons favoring
the “inferior” arms. The additional experimentation is critical to the effi-
ciency of subsample-mean comparison.
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2.3 Subsample-t comparisons

For efficiency outside one-parameter exponential families, we need to work
with test statistics beyond sample means. For example to achieve efficiency
for normal reward distributions with unknown variances, the analogue of
mean comparisons is t-statistic comparisons

Ȳknk
− µζ

σ̂knk

≥
Ȳζ,t:(t+nk−1) − µζ

σ̂ζ,t:(t+nk−1)
,

where σ̂2k,t:u = 1
u−t

∑u
v=t(Ykv−Ȳk,t:u)2 and σ̂kt = σ̂k,1:t. Since µζ is unknown,

we estimate it by Ȳζnζ
.

Subsample-t comparison
Proceed as in subsample-mean comparison, with step 2(b)iii.′ below re-

placing step 2(b)iii.
iii.′ If

√
log n < nk < nζ , then Πk wins the challenge when either Ȳknk

≥
Ȳζnζ

or

Ȳknk
− Ȳζnζ

σ̂knk

≥
Ȳζ,t:(t+nk−1) − Ȳζnζ

σ̂ζ,t:(t+nk−1)
for some 1 ≤ t ≤ nζ − nk + 1. (2.9)

Note that as in subsample-mean comparison, only O(N logN) computa-
tions are needed when the regret is O(logN). This is because it suffices to
record the range of Ȳζnζ

that satisfies (2.9) for each k ̸= ζ, and the actual
value of Ȳζnζ

. The updating of these requires O(1) computations when both
ζ and (nk : k ̸= ζ) are unchanged.

3 Efficiency

Consider firstly an exponential family of density functions

f(x; θ) = eθx−ψ(θ)f(x; 0), θ ∈ Θ, (3.1)

with respect to some measure ν, where ψ(θ) = log[
∫
eθxf(x; 0)ν(dx)] is the

log moment generating function and Θ = {θ : ψ(θ) <∞}. Let fk = f(·; θk)
for some θk ∈ Θ, 1 ≤ k ≤ K. Let θ∗ = max1≤k≤K θk and f∗ = f(·; θ∗). Note
that by (2.1) and (3.1), the KL-information in (2.3),

D(fk|f∗) =

∫
{(θk − θ∗)x− [ψ(θk)− ψ(θ∗)]}f(x; θk)ν(dx)

= (θk − θ∗)µk − [ψ(θk)− ψ(θ∗)] = I∗(µk),

where I∗ is the large deviations rate function of f∗.
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Theorem 1. Under (3.1), subsample-mean comparison has regret RN sat-
isfying

lim sup
N→∞

RN
logN

≤
∑

k:µk<µ∗

µ∗ − µk
D(fk|f∗)

,

and is thus efficient.

We next consider normal rewards with unequal variances, that is with
densities

f(x;µ, σ2) = 1
σ
√
2π
e−

(x−µ)2

2σ2 , (3.2)

with respect to Lebesgue measure. Let M(g) = 1
2 log(1+ g2). Burnetas and

Katehakis (1996) showed that if fk = f(·;µk, σ2k), then under uniformly fast
convergence and additional regularity conditions, an arm allocation proce-
dure must have regret RN satisfying

lim inf
N→∞

RN
logN

≥
∑

k:µk<µ∗

µ∗ − µk

M(µ∗−µkσk
)
.

They proposed an extension of UCB-Lai but needed the verification of a
technical condition to show efficiency. In the case of UCB1-Normal, loga-
rithmic regret also depended on tail bounds of the χ2- and t-distributions
that were only shown to hold numerically by Auer et al. (2002). In Theo-
rem 2 we show that subsample-t comparison attains the goal of efficiency.

Theorem 2. Under (3.2), subsample-t comparison has regret RN satisfying

lim sup
N→∞

RN
logN

≤
∑

k:µk<µ∗

µ∗ − µk

M(µ∗−µkσk
)
,

and is thus efficient

4 Logarithmic regret

We show here that logarithmic regret can be achieved by subsample-mean
comparison under Markovian assumptions. This is possible because in sub-
sample comparison we compare blocks of observations that retain the Marko-
vian structure.

For 1 ≤ k ≤ K, let Xk1, Xk2, . . . be a X -valued Markov chain, with
σ-field A and transition kernel

Pk(x,A) = P (Xkt ∈ A|Xk,t−1 = x), x ∈ X , A ∈ A.
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Let Yk1, Yk2, . . . be real-valued and conditionally independent given (Xkt)t≥1,
which we shall assume for convenience to be stationary, and having condi-
tional densities {fk(·|x) : 1 ≤ k ≤ K,x ∈ X}, with respect to some measure
ν, such that

P (Ykt ∈ B|Xk1 = x1, Xk2 = x2, · · · ) =
∫
B
fk(y|xt)ν(dy).

We assume that the K Markov chains are independent of each other and
that the following Doeblin-type condition holds.

(C1) For 1 ≤ k ≤ K, there exists a non-trival measure λk on (X ,A) such
that

Pk(x,A) ≥ λk(A), x ∈ X , A ∈ A.

As before let µk = EYkt, µ∗ = max1≤k≤K µk and the regret

RN =
∑

k:µk<µ∗

(µ∗ − µk)ENk.

In addition to (C1) we assume the following sample mean large deviations.

(C2) For 1 ≤ k ≤ K and ϵ > 0, there exists θ(= θkϵ) > 0 such that

P (|Ȳkt − µk| ≥ ϵ) = O(e−tθ) as t→ ∞.

(C3) For k such that µk < µ∗ and j such that µj = µ∗, there exists bω > 0
for all ω < µk, such that

P (Ȳjt ≤ ω) = O(e−tbωP (Ȳkt ≤ ω)) as t→ ∞.

Theorem 3. Under (C1)–(C3), subsample-mean comparison has regret RN =
O(logN).

Example 1. Consider the setting of Ykt
i.i.d.∼ fk within each arm k, with

fk positive on the real line. Let Fk(x) =
∫ x
−∞ fk(y)dy. We check that (C1)

holds with λk ≡ fk. If Ik, the large deviations rate function of fk, is positive
at ω ̸= µk, then (C2) holds for 0 < θ < min(Ik(µk − ϵ), Ik(µk + ϵ)). If in
addition Fk(x) ≤ Fj(x) for all x and k, j such that µk < µj = µ∗, then at
ω < µk, Ik(ω) < Ij(ω) and so (C3) holds for 0 < bω < Ij(ω)− Ik(ω).
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Regret
Procedure c N = 1000 N = 10000

Subsample-mean 11.2 19.2
UCB1 37.6 91.6

ϵ-greedy 0.1 35.3 297.5
0.2 26.9 254.5
0.5 21.3 178.0
1 18.3 97.6
2 17.2 65.9
5 23.8 50.5
10 36.9 64.1
20 59.4 102.0

Table 1: Comparison of the regrets of subsample-mean, UCB1 and ϵ-greedy,
for Bernoulli reward distributions.

5 Numerical studies

We compare here subsample-mean and -t against the state-of-the-art pro-
cedures described in Section 2.1. In Examples 2–5 we consider exponential
families and the comparisons are chiefly against procedures in which either
efficiency or logarithmic regret has been established. In Example 6 we con-
sider a non-exponential family and there the comparisons are against pro-
cedures that have been shown to perform well numerically. In each study,
1000 datasets are generated for each N , and the regret of a procedure is
estimated by averaging over

∑
k:µk<µ∗

(µ∗ − µk)Nk. The same datasets are
used for all the procedures compared within a study.

Two procedures are considered to be comparable if their regrets differ
by no more than 10% (of the larger regret). A procedure is considered to be
significantly better than another if its regret is less than two-thirds of the
other one. The general conclusion from the numerical studies is that UCB1-
tuned (to be introduced in Example 5) is the best performer at N = 1000,
whereas subsample-mean and -t are the best performers as N = 10000. A
properly-tuned ϵ-greedy does well when the noise levels are high.

Example 2. Consider Ykt i.i.d. Bernoulli(µk) for 1 ≤ k ≤ 3. We
compare subsample-mean against UCB1 and ϵ-greedy. In each dataset we
generate µk ∼ Uniform(0,1). For ϵ-greedy we consider

ϵn = min(1, 3cn ), (5.1)
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Regret
µ2 µ3 Subsample-mean UCB-Lai

0.475 0.450 2.26 2.20
0.450 0.401 4.05 3.60
0.450 0.269 5.09 3.95
0.450 0.119 5.24 3.65
0.401 0.269 6.38 5.20
0.354 0.119 6.92 5.05
0.269 0.119 7.61 4.80
0.119 0.047 7.15 3.90
0.018 0.002 6.86 3.40
0.0003 0.0003 6.81 3.30

Table 2: Comparison of the regrets of subsample-mean and UCB-Lai for
K = 3, µ1 = 0.5 and N = 100.

and experiment with various values of c.
Table 1 shows that ϵ-greedy, with c = 2 or 5, outperforms UCB1. This

is largely consistent with what has been reported in Auer, Cesa-Bianchi
and Fischer (2002). However subsample-mean is significantly better than
ϵ-greedy, uniformly over c.

Example 3. We consider Bernoulli rewards here, but unlike in Exam-
ple 2 we follow Lai (1987) with fixed values of µ1 = 0.5 and µ3 ≤ µ2 < 0.5.
Tables 2 and 3 summarize the comparison between subsample-mean and
UCB-Lai. The regrets for UCB-Lai, taken from Tables 2 and 3 of Lai
(1987), are smaller than those of subsample mean, significantly so in the
settings of very small µ2 and µ3. This should not be surprising given that
UCB-Lai is specific to a given exponential family of reward distributions,
whereas subsample-mean is non-parametric. In addition UCB-Lai is tar-
geted towards a specific sample size N whereas subsample-mean operates
independently of N . In Lai (1987) it is assumed that µk is known to lie
between 0.01 and 0.99, though the last two lines of Table 2 indicate that
UCB-Lai performs well even when this assumption is violated.

Example 4. Consider Ykt ∼ N(µk, 1), 1 ≤ k ≤ 10. In Table 4 we see
that subsample-mean improves upon UCB1 at N = 1000, and outperforms
UCB-Agrawal [setting bn = log log log n in (2.5)] at both N = 1000 and
10000. Here we generate µk ∼ N(0,1) in each dataset.

Example 5. Consider Ykt ∼ N(µk, σ
2
k), 1 ≤ k ≤ 10. We compare
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Regret
µ2 µ3 Subsample-mean UCB-Lai

0.495 0.490 11.19 10.75
0.490 0.480 19.65 17.50
0.490 0.450 23.86 19.75
0.490 0.401 23.14 16.25
0.480 0.450 30.32 23.75
0.470 0.401 32.50 25.50
0.450 0.401 33.71 25.75
0.401 0.354 27.20 16.75
0.310 0.231 20.10 11.00
0.168 0.168 15.60 8.50

Table 3: Comparison of the regrets of subsample-mean and UCB-Lai for
K = 3, µ1 = 0.5 and N = 2500.

Regret
N = 1000 N = 10000

Subsample-mean 89 137
UCB1 91 154

UCB-Agrawal 113 195

Table 4: The regrets of subsample-mean, UCB1 and UCB-Agrawal for K =
10 populations. The rewards have normal distributions with unit variances.

subsample-t against UCB1-tuned and UCB1-Normal. UCB1-tuned was sug-
gested by Auer et al. and shown to perform well numerically. Under UCB1-
tuned the population Πk maximizing

Ȳknk
+

√
logn
nk

min(14 , Vkn),

where Vkn = σ̂2knk
+

√
2 logn
nk

, is selected. In Table 5 we see that UCB-

tuned is significantly better at N = 1000 whereas subsample-t is better
at N = 10000. UCB1-Normal performs quite badly. Here we generate
µk ∼ N(0, 1) and σ−2

k ∼ Exp(1) in each dataset.

Example 6. Consider double exponential rewards Ykt ∼ fk, with densi-
ties

fk(x) =
1
2λe

−|x−µk|/λ, 1 ≤ k ≤ 10,
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Regret
N = 1000 N = 10000

Subsample-t 251 570
UCB-tuned 126 761

UCB1-Normal 1549 5091

Table 5: The regrets of subsample-t, UCB-tuned and UCB1-Normal, for
K = 10 populations. The rewards have normal distributions with unequal
variances.

with respect to Lebesgue measure. We compare subsample-mean against
UCB1-tuned, Boltzmann exploration and ϵ-greedy [see (5.1)]. We generate
µk ∼ N(0,1) in each dataset. Table 6 shows that UCB1-tuned has the best
performances at N = 1000, whereas subsample-mean has the best perfor-
mances at N = 10000. A properly-tuned ϵ-greedy or Boltzmann exploration
does well at N = 1000 and λ = 2, and a properly-tuned ϵ-greedy also does
well at λ = 5 for both N = 1000 and 10000.

6 Proofs of Theorems 1–3

Since subsample comparison is index-blind, we may assume without loss of
generality that µ1 = µ∗. We provide here the statements and proofs of
supporting Lemmas 1 and 2, and follow up with the proofs of Theorems 1–3
in Sections 6.1–6.3.

Recall that the leading arm refers to the population that has been sam-
pled the most times. We label an arm k as optimal if µk = µ∗, otherwise we
label it as inferior. Let An be the event that at stage n the leading arm is
inferior.

Let Bm be the event that at stage m the leading arm is optimal, and
it loses a challenge to an inferior arm that has been sampled at least m

logm
times. Let Cm be the event that at stage m the leading arm is inferior,
and it wins a challenge against an optimal arm. In Lemma 1 we show how
bounds on P (Bm) and P (Cm) for 1 ≤ m ≤ n lead to an important bound
on P (An). Let nk(mk) be the number of times Πk has been sampled at the
start of stage n(m). Hence

∑K
k=1 nk = n− 1 and

∑K
k=1mk = m− 1.

Lemma 1. If there exists a > 0 such that P (Bm) = O(e
− am

logm ) and P (Cm) =
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Regret
N = 1000 N = 10000

Method c/τ λ = 1 λ = 2 λ = 5 λ = 1 λ = 2 λ = 5

Subsample-mean 144 333 799 239 653 2394
UCB1-tuned 100 261 647 479 1923 4879

Boltzmann 0.01 174 334 722 1460 3195 6173
0.02 166 330 720 1401 3132 6131
0.05 147 316 716 1145 2919 5914
0.1 122 294 700 802 2342 5455
0.2 125 271 662 802 1705 4433
0.5 333 393 657 3106 3130 4255
1 733 737 826 7276 7265 7082

ϵ-greedy 0.1 164 322 696 1242 2799 5747
0.2 161 318 684 1103 2524 5344
0.5 152 278 638 775 1842 4487
1 157 286 600 597 1357 3691
2 197 285 588 495 1077 3000
5 332 394 622 649 994 2465
10 521 567 738 959 1189 2316
20 805 844 951 1559 1749 2651

Table 6: Regret comparisons for double exponential density rewards.

O( 1
m(logm)2

), uniformly over 1 ≤ m ≤ n, then

P (An) = o( 1n). (6.1)

Proof. Let m0 = ⌊(log log n)2⌋. If at some stage m ∈ [m0, n − 1] the
leading arm is optimal, then the probability that there will be at least one
win by an inferior arm with at least m

logm observations, between stages m
and n− 1, is no more than

n−1∑
q=m

P (Bq) = O(ne
− am0

logm0 ) = o( 1n).

It remains for us to show that the probability the leader is inferior, at
all stages between m0 and n, is o( 1n). Since

n−1∑
m=m0

P (Cm) = O( 1
logn),

14



the probability that an inferior leading arm wins at least n√
logn

times be-

tween stages m0 and n − 1, against optimal arms, is
√
logn
n O( 1

logn) = o( 1n).
But it is not possible to have inferior leading arms at all stages between m
to n, with them winning no more than n√

logn
times against optimal arms

between stagesm and n−1. This is because maxk:µk<µ∗ mk−maxk:µk=µ∗ mk

reduces by 1 after each round in which the leading inferior arm loses to all
optimal arms. Note in particular that by step 2(b)i., the leading inferior
arm wins against all inferior arms with the same number of observations.
With that we conclude (6.1). ⊓⊔

Let Bnk be the event that at stage n the leading arm is optimal, and it
loses a challenge to an inferior arm k.

Lemma 2. Consider the following conditions for an inferior arm k.

(I) There exists ξk > 0 such that for all ϵ > 0, as N → ∞,

P (Bnk occurs for some 1 ≤ n ≤ N with nk = ⌊(1 + ϵ)ξk logN⌋) → 0.

(II) There exists Jk > 0 such that as N → ∞,

P (Bnk occurs for some 1 ≤ n ≤ N with nk = ⌊Jk logN⌋) = O(N−1).

If (6.1), (I) and (II) hold, then

lim sup
N→∞

ENk

logN
≤ ξk. (6.2)

Proof. By (6.1),
∑N

n=1 P (An) = o(logN), and (6.2) thus follows from
(I) and (II). ⊓⊔

6.1 Proof of Theorem 1

We consider here subsample-mean comparisons. Let Ij be the large devia-
tions rate function of fj . By Lemmas 1 and 2 it suffices, in Lemmas 3–
5 below, to verify the conditions needed to show that (6.2) holds with
ξk = 1/I1(µk).

Lemma 3. Under (3.1), P (Bm) = O(e
− am

logm ) for some a > 0.

Proof. Consider the case that at stage m the leading optimal arm is
arm 1, and it loses a challenge to an inferior arm k with mk ≥ m

logm . Let
maxj:µj<µ1 µj < ω < µ1. It follows from large deviations that

P (Ȳ1,t:(t+mk−1) ≤ ω for some 1 ≤ t ≤ m) ≤ me−mkI1(ω),

15



P (Ȳkmk
≥ ω) ≤ e−mkIk(ω).

Since mk ≥ m
logm , the above inequalities imply that Lemma 3 holds for

0 < a < min1≤k≤K Ik(ω). ⊓⊔

Lemma 4. Under (3.1), P (Cm) = O( 1
m(logm)2

).

Proof. Consider the case that k is the leading inferior arm, and it
wins a challenge against optimal arm 1 at stage m. By step 2(b)ii., arm k
loses automatically when m1 <

√
logm, hence we need only consider m1 >√

logm.
Case 1: m1 > (logm)2. Let µk < ω < µ1. By large deviations,

P (Ȳ1m1 < ω for some m1 > (logm)2) = O( 1
m(logm)2

), (6.3)

P (Ȳkm1 > ω for some m1 > (logm)2) = O( 1
m(logm)2

). (6.4)

Case 2:
√
logm < m1 < (logm)2. Since mk ≥ m−1

K , it suffices to show
that there exists ω such that

P (Ȳ1m1 < ω) = O( 1
m(logm)4

), (6.5)

P (Ȳk,t:(t+m1−1) > ω for 1 ≤ t ≤ m−1
K −m1 + 1) (6.6)

(≤ [P (Ȳkm1 > ω)][(m−1)/K−m1+1]/m1) = O( 1
m(logm)4

).

Since θ1 > θk, if
∑m1

t=1 yt ≤ m1µk, then by (3.1),

m1∏
t=1

f(yt; θ1) = e(θ1−θk)
∑m1

t=1 yt−m1[ψ(θ1)−ψ(θk)]
m1∏
t=1

f(yt; θk)

≤ e−m1I1(µk)
m1∏
t=1

f(yt; θk).

Hence if ω ≤ µk, then as m1 >
√
logm,

P (Ȳ1m1 < ω) ≤ e−m1I1(µk)P (Ȳkm1 < ω) = O( 1
(logm)8

P (Ȳkm1 < ω)). (6.7)

Let ω(≤ µk for large m) be such that

P (Ȳkm1 < ω) ≤ (logm)4

m ≤ P (Ȳkm1 ≤ ω). (6.8)

We check that (6.5) follows from (6.7) and the first inequality in (6.8),
whereas (6.6) follows from the second inequality in (6.8) and m1 ≤ (logm)2.
Lemma 3 follows from (6.3)–(6.6). ⊓⊔
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Lemma 5. Under (3.1), both (I) and (II), in the statement of Lemma 2,
hold for ξk = 1/I1(µk).

Proof. Consider an inferior arm k and stage n with nk = ⌊[(1 +
ϵ) logN ]/I1(µk)⌋. Let µk < ω < µ1 be such that (1 + ϵ)I1(ω) > I1(µk).
It follows from large deviations that

P (Ȳ1,t:(t+nk−1) ≤ ω for some 1 ≤ t ≤ N) ≤ Ne−nkI1(ω) → 0,

P (Ȳknk
≥ ω) ≤ e−nkIk(ω) → 0,

and (I) therefore holds.
Next consider Jk > max( 1

Ik(ω)
, 2
I1(ω)

). If nk = ⌊Jk logN⌋, then

P (Ȳ1,t:(t+nk−1) ≤ ω for some 1 ≤ t ≤ N) ≤ Ne−nkI1(ω) = O(N−1),

P (Ȳknk
≥ ω) ≤ e−nkIk(ω) = O(N−1),

and (II) holds as well. ⊓⊔

6.2 Proof of Theorem 2

We consider here subsample-t comparisons. By Lemmas 1 and 2 it suffices,
in Lemmas 6–8 below, to verify the conditions needed to show that (6.2)
holds with ξk = 1/M(µ∗−µkσk

). Let Φ̄(z) = P (Z > z) for Z ∼ N(0,1).

Lemma 6. Under (3.2), P (Bm) = O(e
am

logm ) for some a > 0.

Proof. Consider the case that at stage m the leading optimal arm is
arm 1, and that it loses a challenge to an inferior arm k with mk ≥ m

logm .

Let ϵ > 0 be such that ω := µk−µ1+ϵ
2σk

< 0, noting that

P (
Ȳkmk

−Ȳ1m1

σ̂kmk
≥ ω) ≤ P (

Ȳkmk
−Ȳ1m1

2σk
≥ ω) + P (σ̂kmk

≥ 2σk). (6.9)

Since Ȳkmk
− Ȳ1m1 ∼ N(µk − µ1,

σ2
1

m1
+

σ2
k

mk
) and m1 ≥ mk,

P (
Ȳkmk

−Ȳ1mk
2σk

≥ ω) ≤ Φ̄(ϵ
√

mk

σ2
1+σ

2
k
) (6.10)

= O(m−2e
− am

logm ) for 0 < a < ϵ2

2(σ2
1+σ

2
k)
.

Since mk ≥ m
logm , by large deviations,

P (σ̂kmk
> 2σk) = O(m−2e

− am
logm ) for some a > 0. (6.11)
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It follows from arguments similar to those in (6.10) and (6.11) that

P (
Ȳ1,t:(t+mk−1)−Ȳ1m1

σ̂1,t:(t+mk−1)
≤ ω for some 1 ≤ t ≤ m) (6.12)

≤ m[P (
Ȳ1mk

−Ȳ1m1

σ1/2
≤ ω) + P (σ̂1mk

≤ σ1
2 )]

= O(m−2e
− am

logm ) for some a > 0.

It also follows from large deviations arguments that

P (Ȳkmk
≥ Ȳ1m1) = O(m−2e

− am
logm ) for some a > 0,

and Lemma 6 thus follows from (6.9)–(6.12). ⊓⊔

Lemma 7. Under (3.2), P (Cm) = O( 1
m(logm)2

).

Proof. Consider the case that k is the leading inferior arm, and it
wins against optimal arm 1 at stage m. By step 2(b)ii. of subsample-t
comparisons, we need only consider m1 >

√
logm. Note that mk ≥ m−1

K .
Case 1. m1 > (logm)2. Let ω = µ1+µk

2 and check that

P (Ȳ1m1 ≤ ω) + P (Ȳkmk
≥ ω) (6.13)

≤ e−m1(µ1−µk)2/(8σ2
1) + e−mk(µ1−µk)2/(8σ2

k) = O(m−3).

Case 2.
√
logm < m1 < (logm)2. Let us condition on Ȳkmk

= µk − γ.
Since

P (|Ȳkmk
− µk| ≥ m− 1

3 ) ≤ e
− mk

2m2/3 = O(m−3),

it suffices to consider |γ| ≤ m− 1
3 . Let ω(≤ 0 for m large) be such that

P (
Ȳkm1

−µk+γ
σ̂km1

≤ ω) = (logm)4

m . (6.14)

It follows from (6.14) that

P (
Ȳk,t:(t+m1−1)−µk+γ

σ̂k,t:(t+mk−1)
> ω for 1 ≤ t ≤ m−1

K −m1 + 1) (6.15)

≤ [P (
Ȳkm1

−µk+γ
σ̂km1

> ω)][(m−1)/K−m1+1]/m1 = O( 1
m(logm)4

).

Lemma 7 then follows from (6.13) and showing that

P (
Ȳ1m1−µk+γ

σ̂1m1
≤ ω) = O( 1

m(logm)4
). (6.16)
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To show (6.16) from (6.14), we note that conditioned on σ̂2km1
= σ2k/τ for

some τ > 0,
Ȳkm1

−µk+γ
σ̂km1

∼ N(γ
√
τ

σk
, τ
m1

), (6.17)

whereas conditioned on σ̂21m1
= σ21/τ ,

Ȳ1m1−µk+γ
σ̂1m1

∼ N( (µ1−µk+γ)
√
τ

σ1
, τ
m1

). (6.18)

By a change-of-measure argument on Z ∼ N(β, τ
m1

) for β1 ≥ β2 (and since
ω ≤ 0),

Pβ1(Z ≤ ω) ≤ em1[(ω−β1)2−(ω−β2)2]/(2τ)Pβ2(Z ≤ ω)

≤ em1(β2
2−β2

1)/(2τ)Pβ2(Z ≤ ω).

In view of (6.17) and (6.18), we consider the above inequalities with β1 =

c+ γ
√
τ

σ1
(where c = µ1−µk

σ1
) and β2 =

γ
√
τ

σk
, which leads us to

Pβ1(Z ≤ ω) ≤ [1 + o(1)]e−m1c2/(2τ)Pβ2(Z ≤ ω) (6.19)

= O( 1
(logm)8

Pβ2(Z ≤ ω)),

uniformly over 0 < τ < m1
(log logm)2

(:= τm)and |γ| ≤ m− 1
3 . Since σ̂21m1

/σ21
d
=

σ̂km1/σ
2
k

d
=

∑m1−1
t=1 Z2

t with Z2
t

i.i.d∼ N(0,1), it follows from a change-of-
measure of the distribution of Z2

t to N(0,τ−1
m ) that

P (σ̂21m1
/σ21 ≤ τ−1

m ) ≤ e−
m1−1
2τm /(τ

m1−1
2

m e−
m1−1

2 ) = O( 1
m(logm)4

).

Therefore by (6.14), (6.19) and the independence between σ̂km1 and σ̂1m1

with Ȳkm1 and Ȳ1m1 ,

P (
Ȳ1m1−µk+γ

σ̂1m1
≤ ω) = O( 1

(logm)8
(logm)4

m ),

and (6.16) indeed holds. ⊓⊔

Lemma 8. Under (3.2), both (I) and (II), in the statement of Lemma 2,
hold for ξk = 1/M(µ∗−µkσk

).

Proof. By considering the rewards Ykt−µ1
σ1

, we may assume without loss

of generality that (µ∗ =)µ1 = 0 and σ21 = 1. Consider an inferior arm k and
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stage n with nk = ⌊[(1 + ϵ) logN ]/M(gk)⌋ for some ϵ > 0. Let gk = µk
σk

and
let gω be such that

0 > gω > gk and (1 + ϵ)M(gω) > M(gk). (6.20)

Select τ > 0 small enough such that

P (σ̂1,t:(t+nk−1) ≤ τ for some 1 ≤ t ≤ N) → 0, (6.21)

and let β > 1 and γ0 > 0 be such that

µk/
√
β−γ

σk
√
β

≤ gω − γ
τ for |γ| ≤ γ0. (6.22)

By large deviations, there exists ak > 0 such that,

P (Ȳknk
≥ µk√

β
) + P (σ̂knk

≥ σk
√
β) ≤ 2e−nkak → 0, (6.23)

P (|Ȳ1n1 | ≥ γ0 for some nk ≤ n1 ≤ N) → 0. (6.24)

Moreover

P (
Ȳ1,t:(t+nk−1)

σ̂1,t:(t+nk−1)
≤ gω for some 1 ≤ t ≤ N) ≤ NP (

Ȳ1nk
σ̂1nk

≤ gω) → 0, (6.25)

since by large deviations and the independence of Ȳ1nk
and σ̂1nk

,

n−1
k | logP ( Ȳ1nk

σ̂1nk
≤ gω)|

= inf
σ>0

{n−1
k [| logP (Ȳ1nk

≤ gωσ)|+ | logP (σ̂1nk
≤ σ)|]}+ o(1)

→ inf
σ>0

[ (gωσ)
2

2 + 1
2(σ

2 − 1− log σ2)] =M(gω),

and nkM(gω) > logN (note infimum above attained at σ2 = 1
g2ω+1

).

By (6.21)–(6.25),

P (
Ȳknk

−Ȳ1n1

σ̂knk
≥ Ȳ1,t:(t+nk−1)−Ȳ1n1

σ̂1,t:(t+nk−1)
for some 1 ≤ t ≤ N) → 0,

and this, with

P (Ȳknk
≥ Ȳ1n1 for some nk ≤ n1 ≤ N) → 0, (6.26)

shows (I).
To show (II), we check that for nk = ⌊Jk logN⌋ with Jk large enough,

the relations in (6.21) and (6.23)–(6.26) hold with “= O(N−1)” replacing
“→ 0”. ⊓⊔
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6.3 Proof of Theorem 3

We consider here subsample-mean comparisons. Assume (C1)–(C3) and let
µ̃ = maxk:µk<µ∗ µk. By Lemmas 1 and 2 it suffices, in Lemmas 9–11 below,
to verify the conditions needed to show that (6.2) holds for some ξk > 0.

Lemma 9. Under (C2), P (Bm) = O(e
− am

logm ) for some a > 0.

Proof. Let ϵ = 1
2(µ∗ − µ̃). It follows from (C2) and arguments in the

proof of Lemma 3, setting ω = 1
2(µ∗ + µ̃), that P (Bm) = O(m2e

− θm
logm ) for

some θ > 0. Hence Lemma 9 holds for 0 < a < θ. ⊓⊔
Lemma 10. Under (C1)–(C3), P (Cm) = O( 1

m(logm)2
).

Proof. Consider the case that k is the leading inferior arm, and it
wins against optimal arm 1 at stage m. By step 2(b)ii. of subsample-mean
comparison, we need only consider m1 >

√
logm.

Case 1: m1 > (logm)2. Let ω and ϵ be as in the proof of Lemma 9, and
check that by (C2), there exists θ > 0 such that

P (Ȳ1m1 ≤ ω) + P (Ȳkmk
≥ ω) = O(e−m1θ) = O(m−3). (6.27)

Case 2:
√
logm < m1 < (logm)2. Select ω(≤ µk for m large) such that

P (Ȳkm1 < ω) ≤ (logm)4

m ≤ P (Ȳkm1 ≤ ω). (6.28)

Let pω = P (Ȳkm1 > ω) and let κ = ⌊ (m−1)/K−m1

2m1
⌋. By (C1) and the second

inequality of (6.28),

P (Ȳk,t:(t+m1−1) > ω for 1 ≤ t ≤ m−1
K −m1 + 1) (6.29)

≤ P (Ȳk,t:(t+m1−1) > ω for t = 1, 2m1 + 1, . . . , 2κm1 + 1)

≤ pκ+1
ω + κ[1− λk(R)]m1 = O( 1

m(logm)4
).

It follows from (C3) and the first inequality of (6.28) that

P (Ȳ1m1 < ω) = O( 1
m(logm)4

),

and Lemma 10 thus follows from (6.27) and (6.29). ⊓⊔
Lemma 11. Under (C2), statement (II) in Lemma 2 holds.

Proof. Let ϵ and ω be as in the proof of Lemma 9, and let Jk >
2
θ ,

where θ is given in (C2). It follows that for n = ⌊Jk logN⌋,

P (Ȳ1,t:(t+nk−1) ≤ ω for some 1 ≤ t ≤ N) = O(Ne−nkθ) = O(N−1),

P (Ȳknk
≥ ω) = O(e−nkθ) = O(N−1),

and (II) indeed holds. ⊓⊔
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