Statistical Methods for QTL Mapping
Aims and scope:
This series aims to capture new developments and summarize what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged.

Series Editors

N. F. Britton
Department of Mathematical Sciences
University of Bath

Xihong Lin
Department of Biostatistics
Harvard University

Hershel M. Safer
School of Computer Science
Tel Aviv University

Maria Victoria Schneider
European Bioinformatics Institute

Mona Singh
Department of Computer Science
Princeton University

Anna Tramontano
Department of Biochemical Sciences
University of Rome La Sapienza

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
3 Park Square, Milton Park
Abingdon, Oxfordshire OX14 4RN
UK
Published Titles

Algorithms in Bioinformatics: A Practical Introduction
Wing-Kin Sung

Bioinformatics: A Practical Approach
Shui Qing Ye

Biological Computation
Ehud Lamm and Ron Unger

Biological Sequence Analysis Using the SeqAn C++ Library
Andreas Gogol-Döring and Knut Reinert

Cancer Modelling and Simulation
Luigi Preziosi

Cancer Systems Biology
Edwin Wang

Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling
Arnaud Chauvière, Luigi Preziosi, and Claude Verdier

Clustering in Bioinformatics and Drug Discovery
John D. MacCuish and Norah E. MacCuish

Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R
Gabriel Valiente

Computational Biology: A Statistical Mechanics Perspective
Ralf Blossey

Computational Hydrodynamics of Capsules and Biological Cells
C. Pozrikidis

Computational Neuroscience: A Comprehensive Approach
Jianfeng Feng

Computational Systems Biology of Cancer
Emmanuel Barillot, Laurence Calzone, Philippe Hupé, Jean-Philippe Vert, and Andrei Zinovyev

Data Analysis Tools for DNA Microarrays
Sorin Draghici

Differential Equations and Mathematical Biology, Second Edition
D.S. Jones, M.J. Plank, and B.D. Sleeman

Dynamics of Biological Systems
Michael Small

Engineering Genetic Circuits
Chris J. Myers

Exactly Solvable Models of Biological Invasion
Sergei V. Petrovskii and Bai-Lian Li

Game-Theoretical Models in Biology
Mark Broom and Jan Rychtář

Gene Expression Studies Using Affymetrix Microarrays
Hinrich Göhlmann and Willem Talloen

Genome Annotation
Jung Soh, Paul M.K. Gordon, and Christoph W. Sensen

Glycome Informatics: Methods and Applications
Kiyoko F. Aoki-Kinoshita

Handbook of Hidden Markov Models in Bioinformatics
Martin Gollery

Introduction to Bioinformatics
Anna Tramontano

Introduction to Bio-Ontologies
Peter N. Robinson and Sebastian Bauer

Introduction to Computational Proteomics
Golan Yona

Introduction to Proteins: Structure, Function, and Motion
Amit Kessel and Nir Ben-Tal

An Introduction to Systems Biology: Design Principles of Biological Circuits
Uri Alon

Kinetic Modelling in Systems Biology
Oleg Demin and Igor Goryanin

Knowledge Discovery in Proteomics
Igor Jurisica and Dennis Wigle
Published Titles (continued)

Meta-analysis and Combining Information in Genetics and Genomics
Rudy Guerra and Darlene R. Goldstein

Jules J. Berman

Modeling and Simulation of Capsules and Biological Cells
C. Pozrikidis

Niche Modeling: Predictions from Statistical Distributions
David Stockwell

Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems
Qiang Cui and Iveta Bahar

Optimal Control Applied to Biological Models
Suzanne Lenhart and John T. Workman

Pattern Discovery in Bioinformatics: Theory & Algorithms
Laxmi Parida

Python for Bioinformatics
Sebastian Bassi

Quantitative Biology: From Molecular to Cellular Systems
Sebastian Bassi

Spatial Ecology
Stephen Cantrell, Chris Cosner, and Shigui Ruan

Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation
Horst Malchow, Sergei V. Petrovskii, and Ezio Venturino

Statistical Methods for QTL Mapping
Zehua Chen

Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition
Sorin Drăghici

Stochastic Modelling for Systems Biology, Second Edition
Darren J. Wilkinson

Structural Bioinformatics: An Algorithmic Approach
Forbes J. Burkowski

The Ten Most Wanted Solutions in Protein Bioinformatics
Anna Tramontano
Statistical
Methods for QTL Mapping

Zehua Chen
National University of Singapore
1 Biological Background

1.1 A Brief Sketch of the History of Genetics and Mendel’s Pea Plant Experiments 1
1.2 Basic Elements of Genetics 3
 1.2.1 Cells, Chromosomes and DNA Sequences 3
 1.2.2 Genes .. 5
 1.2.3 Genetic Traits and Phenotypes 5
 1.2.4 Gene Effects and Genetic Modes 6
1.3 Cell Division, Crossover and Recombination 7
 1.3.1 Mitosis .. 8
 1.3.2 Meiosis .. 9
 1.3.3 Recombination ... 11
1.4 Gene Expression ... 12
 1.4.1 Transcription ... 12
 1.4.2 Translation .. 13
 1.4.3 Gene Regulation 14
1.5 Genetic Maps and Mapping Functions 15
 1.5.1 Cytogenetic Maps 15
 1.5.2 Physical Maps .. 15
 1.5.3 Genetic Linkage Maps 15
 1.5.4 Crossover Interference 17
 1.5.5 A General Form of Mapping Functions 18
 1.5.6 Special Mapping Functions 20
1.6 Experimental Crosses 21
 1.6.1 The Mechanism of Selfing and Sibling Mating 22
 1.6.2 The F1 Generation 24
 1.6.3 Backcross .. 25
 1.6.4 Intercross ... 26
 1.6.5 Recombinant Inbred Lines 26
Contents

1.6.6 Other Experimental Crosses .. 30

2 Selected Topics in Statistics ... 31

2.1 Population and Distribution .. 31
 2.1.1 Natural Population and Statistical Population 31
 2.1.2 Distributions .. 32
 2.1.3 Special Distributions ... 34

2.2 Random Variable, Samples, Statistics and Related Distribution 39
 2.2.1 Random Sample and Statistics ... 39
 2.2.2 t, χ^2 and F Distributions .. 41
 2.2.3 Distributions of Sample Mean and Sample Variance 42

2.3 Estimation ... 42
 2.3.1 Maximum Likelihood Estimation .. 42
 2.3.2 Method of Moments ... 44
 2.3.3 Unbiasedness, Mean Square Error and Consistency 45
 2.3.4 Interval Estimation .. 46
 - 2.3.4.1 Asymptotic Confidence Intervals 46
 - 2.3.4.2 Bootstrap Confidence Intervals 47

2.4 Hypothesis Testing ... 48
 2.4.1 Neyman-Pearson Framework ... 49
 2.4.2 t-Test and F-Test ... 50
 2.4.3 Pearson’s χ^2-Test ... 52
 2.4.4 Likelihood Ratio Test ... 54

2.5 Linear and Generalized Linear Models ... 55
 2.5.1 Linear Models .. 55
 2.5.2 Generalized Linear Models ... 57

2.6 Mixture Models and EM Algorithm .. 59

2.7 Bayesian Analysis .. 61
 2.7.1 General Framework of Bayesian Analysis 62
 2.7.2 Empirical and Hierarchical Bayesian Analysis 63
 2.7.3 Markov Chain Monte Carlo Simulation 64
 2.7.4 Bayes Factor .. 65

2.8 Samplers for Markov Chain Monte Carlo Simulation 66
 2.8.1 The Gibbs Sampler ... 66
 2.8.2 Metropolis-Hastings Algorithm .. 67
 2.8.3 Reversible Jump MCMC ... 68
 2.8.4 Extracting Information from the MCMC Sequence 70

2.9 An Overview on Feature Selection with Small-n-Large-p Models 71

2.10 Model Selection Criteria for Small-n-Large-p Models 73

3 Quantitative Genetics and General Issues on QTL Mapping 77

3.1 Distributional Features of Genetic Quantitative Traits 77
 3.1.1 Features of Genetic and Non-genetic Quantitative Traits 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2</td>
<td>Features of Genetic Traits Affected by Major and Minor QTL</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Genetic Values and Variances</td>
<td>80</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Genotype and Allele Frequencies</td>
<td>81</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Genetic Values</td>
<td>82</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Genetic Variance and Heritability</td>
<td>85</td>
</tr>
<tr>
<td>3.3</td>
<td>Statistical Models with Known QTL Genotypes</td>
<td>86</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Models with Single QTL</td>
<td>86</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Models with Multiple QTL</td>
<td>87</td>
</tr>
<tr>
<td>3.4</td>
<td>Conditional Probabilities of Putative QTL Genotypes Given Markers</td>
<td>88</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Conditional Probabilities of Putative QTL Genotypes in Backcross and Intercross Populations</td>
<td>88</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Conditional Probabilities of Putative QTL Genotypes in RILs</td>
<td>93</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Comparison of Conditional Probabilities under Different Assumptions on Crossover Interference</td>
<td>96</td>
</tr>
<tr>
<td>3.5</td>
<td>QTL Mapping Data</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>One-dimensional Mapping Approaches</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>QTL Mapping by Single-marker Analysis</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>Single Interval Mapping</td>
<td>104</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Interval Mapping by Normal Mixture Models</td>
<td>104</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Interval Mapping by Haley-Knott Regression</td>
<td>109</td>
</tr>
<tr>
<td>4.2.3</td>
<td>A Remark</td>
<td>111</td>
</tr>
<tr>
<td>4.3</td>
<td>Composite Interval Mapping</td>
<td>112</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Composite Interval Mapping with Normal Mixture Models</td>
<td>112</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Composite Interval Mapping with Haley-Knott Regression</td>
<td>114</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Choice of Adjusting Markers</td>
<td>114</td>
</tr>
<tr>
<td>4.4</td>
<td>Determination of Threshold Values</td>
<td>115</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Theoretical Approximation</td>
<td>116</td>
</tr>
<tr>
<td>4.4.2</td>
<td>A Simulation Approach</td>
<td>117</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Permutation Test</td>
<td>118</td>
</tr>
<tr>
<td>4.5</td>
<td>Determination of Sample Sizes</td>
<td>120</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The Case with Known QTL Genotypes</td>
<td>120</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The Case of Interval Mapping</td>
<td>123</td>
</tr>
<tr>
<td>4.6</td>
<td>Selective Genotyping</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>Multiple Interval Mapping</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>Gaussian Mixture Models for QTL Mapping</td>
<td>132</td>
</tr>
<tr>
<td>5.2</td>
<td>An EM algorithm for Gaussian Mixture Models</td>
<td>134</td>
</tr>
</tbody>
</table>
Contents

5.3 Mixture Generalized Linear Models ... 137
5.4 General EM Algorithms for Mixture Generalized Linear Models 139
 5.4.1 EM Algorithm for Backcross Design 140
 5.4.2 Adaptation for Intercross Design 144
 5.4.3 A Special Issue on Binary Traits 145
5.5 Multiple Interval Mapping Procedures 146
5.6 Example: The Analysis of Radiata Pine Data 149
5.7 Multiple Interval Mapping with Polytomous Traits 149
 5.7.1 Mixture Models for Ordinal Traits 150
 5.7.2 EM Algorithm for Mixture Polytomous Models 155
 5.7.3 Multiple Interval Mapping with Nominal Traits 157
5.8 Multiple Interval Mapping of Traits with Spike Distributions 158
 5.8.1 The Mixture Models for Traits with Spike Distributions 159
 5.8.2 EM Algorithm for Traits with Spike Distributions 160
 5.8.3 The Mapping Strategy .. 163
 5.8.4 Example: The Analysis of Mouse *Listeria monocytogenes* Infection Data ... 163
 5.8.5 Single-QTL Methods and Comparisons 164

6 QTL Mapping with Dense Markers .. 167
 6.1 Feature Selection Methods for QTL Mapping 167
 6.1.1 Preliminary Screening ... 168
 6.1.2 QTL Mapping by Penalized Likelihood Methods 170
 6.1.3 Example: Analysis of CGEMS Prostate Cancer Data 171
 6.1.4 QTL Mapping by Sequential Methods 173
 6.1.4.1 Sequential Methods for Gaussian Traits 174
 6.1.4.2 Sequential Methods for Non-Gaussian Traits 176
 6.1.4.3 Example: Analysis of F₂ Rat Data 178
 6.2 QTL Mapping with Consideration of QTL Epistatic Effects 179
 6.2.1 Special Natures of Interaction Models for QTL Mapping ... 179
 6.2.2 The Mapping Procedure with Interaction Models 181
 6.2.3 Example: Mapping QTL for Locomotor Activation and Anxiety with F₂ Mouse Model 183

7 Bayesian Approach to QTL Mapping .. 185
 7.1 The Framework of the Bayesian Approach to QTL Mapping 185
 7.2 Bayesian QTL Mapping with Inbred Line Cross Data 187
 7.2.1 Bayesian Models without Epistatic Effects 188
 7.2.1.1 The Number of QTLs Treated as Fixed 189
 7.2.1.2 The Number of QTLs Treated as a Random Variable 192
 7.2.1.3 Example: Mapping Loci Controlling Flowering Time in *Brassica napus* ... 195
Contents

7.2.2 Bayesian Models with Epistatic Effects 199
7.2.3 Example: Mapping QTL Affecting Heading in Two-Row Barley ... 205
7.2.4 Missing Marker Genotypes and Other Issues 206
7.3 Bayesian QTL Mapping for Outbred Offsprings 209
 7.3.1 The Prior on Marker Haplotypes and QTL Genotypes 209
 7.3.2 The MCMC Procedures for Mapping with Outbred Offsprings ... 213
7.4 Bayesian QTL Mapping for Ordinal Polytomous Traits 214

8 Multi-trait QTL Mapping and eQTL Mapping 219
 8.1 Multi-trait QTL Mapping I: Single-QTL Model Approaches 220
 8.1.1 One-trait-at-a-time Method 220
 8.1.2 Meta-trait Method 221
 8.1.3 Multivariate Composite Interval Mapping 222
 8.2 Multi-trait QTL Mapping II: Multi-QTL Model Approaches 227
 8.2.1 Sparse Partial Least Squares Regression 228
 8.2.2 Multivariate Sequential Procedures 230
 8.2.3 Bayesian Approaches 237
 8.3 eQTL Mapping Approaches 244
 8.3.1 Specific Features of eQTL Mapping 245
 8.3.2 Approaches Based on Single-QTL Models 246
 8.3.3 Multi-QTL Model Methods 251
 8.3.4 Clustering of Transcripts 252
 8.3.5 General eQTL Mapping Strategies 260
 8.3.6 Case Study: eQTL Mapping with GEO Mouse Data GSE3330 ... 261

Bibliography .. 267

Index ... 285