Statistics and Risk in the Nuclear Industry

Group 2: Jing Kai (Presenter) | Nabilah | Soon Guan
Overview

- Nuclear Power Generators
 - Background information on Nuclear Energy
 - Statistical Considerations
- Reprocessing of Nuclear Waste
 - Probabilistic Safety Assessment
- Conclusion
References

Nuclear Energy

- Production of heat energy through splitting of atoms (Uranium, Thorium, Plutonium etc.)
- Heat is carried away by a gas (CO2 in Magnox reactors)
- Hot gas is used to raise steam and generate electricity
- Sustainable, reduces carbon emissions
• Fuel enters reactor vessel with small neutron source
• Reaction Site: Rods within pressure vessel
• CO2 forced out through channel gas outlets (CGOs) on the reactor’s surface at high temperatures
Temperature of CO2 at CGOs

- Key to reactor’s performance
- Controlled via manipulation of rods
- Higher temperature = Greater power output over the machine’s lifetime ➔ Greater economic advantages
Statistical Considerations

- Expected number of CGO temperatures exceeding 400°C to be less than 0.01
- Known temperatures at only 10% of CGOs (400 out of 4000)
 - Upper limit of 390°C

However,

- Temperature prone to fluctuations ➔ Distribution may not be uniform across all CGOs
- Hence a need for sophisticated statistical methods to extrapolate data
Statistical Methods

- Power laws
- Pareto distribution on the upper tail
- Smoothed temperature measurements: Remove interferences from background signals/noise
Reprocessing of Nuclear Waste

- Separating unspent uranium and manufactured plutonium from waste products for possible use as new fuel
- Theoretical computation vs Instrumental measurements: Statistical tolerance set at ± 0.45%
- Redundancy
 - Deviations brushed off as outliers or calculation errors
 - Unable to establish link between deviations and failure within the system
Probabilistic Safety Assessment

- Specialised examination of the system’s design along with data synthesis and subjective expert judgement
- Probability diagram of external events and subsequent damage to the system → Data prioritised according to set criteria eg. Failure of the system, hazardous levels of emissions etc
- Associated weaknesses are then subsequently addressed
Conclusion

- Textbook methods may sometimes not be good enough
- Experienced-based judgements incorporated with statistics for a more rigorous safety criteria
- Lingering problems in objective risk assessment:
 - Failure events are rare
 - Commercial pressures
Thank You!